The impact of ultraviolet heating and cooling on the dynamics and observability of lava planet atmospheres

Monthly Notices of the Royal Astronomical Society Oxford University Press 513:4 (2022) 6125-6133

Authors:

T Giang Nguyen, Nicolas B Cowan, Raymond T Pierrehumbert, Roxana E Lupu, John E Moores

Abstract:

Lava planets have non-global, condensible atmospheres similar to icy bodies within the Solar system. Because they depend on interior dynamics, studying the atmospheres of lava planets can lead to understanding unique geological processes driven by their extreme environment. Models of lava planet atmospheres have thus far focused on either radiative transfer or hydrodynamics. In this study, we couple the two processes by introducing ultraviolet (UV) and infrared (IR) radiation to a turbulent boundary layer model. We also test the effect of different vertical temperature profiles on atmospheric dynamics. Results from the model show that UV radiation affects the atmosphere much more than IR. UV heating and cooling work together to produce a horizontally isothermal atmosphere away from the substellar point regardless of the vertical temperature profile. We also find that stronger temperature inversions induce stronger winds and hence cool the atmosphere. Our simulated transmission spectra of the bound atmosphere show a strong SiO feature in the UV that would be challenging to observe in the planet’s transit spectrum due to the precision required. Our simulated emission spectra are more promising, with significant SiO spectral features at 4.5 and 9 μm that can be observed with the James Webb Space Telescope. Different vertical temperature profiles produce discernible dayside emission spectra, but not in the way one would expect.

Water observed in the atmosphere of {\tau} Bootis Ab with CARMENES/CAHA

(2022)

Authors:

Rebecca K Webb, Siddharth Gandhi, Matteo Brogi, Jayne L Birkby, Ernst de Mooij, Ignas Snellen, Yapeng Zhang

Patchy nightside clouds on ultra-hot Jupiters: General Circulation Model simulations with radiatively active cloud tracers

(2022)

Authors:

Thaddeus D Komacek, Xianyu Tan, Peter Gao, Elspeth KH Lee

Plant power: Burning biomass instead of coal can help fight climate change—but only if done right

Bulletin of the Atomic Scientists Taylor & Francis 78:3 (2022) 125-127

Uranus and Neptune’s stratospheric water abundance and vertical profile from Herschel-HIFI

Planetary Science Journal IOP Publishing 3:4 (2022) 96

Authors:

Nicholas Teanby, Patrick Irwin, Melodie Sylvestre, Conor Nixon, Martin Cordiner

Abstract:

Here we present new constraints on Uranus’s and Neptune’s externally sourced stratospheric water abundance using disk-averaged observations of the 557 GHz emission line from Herschel’s Heterodyne Instrument for the Far-Infrared. Derived stratospheric column water abundances are × 1014 cm−2 for Uranus and ×1014 cm−2 for Neptune, consistent with previous determinations using ISO-SWS and Herschel-PACS. For Uranus, excellent observational fits are obtained by scaling photochemical model profiles or with step-type profiles with water vapor limited to ≤0.6 mbar. However, Uranus’s cold stratospheric temperatures imply a ∼0.03 mbar condensation level, which further limits water vapor to pressures ≤0.03 mbar. Neptune’s warmer stratosphere has a deeper ∼1 mbar condensation level, so emission-line pressure broadening can be used to further constrain the water profile. For Neptune, excellent fits are obtained using step-type profiles with cutoffs of ∼0.3–0.6 mbar or by scaling a photochemical model profile. Step-type profiles with cutoffs ≥1.0 mbar or ≤0.1 mbar can be rejected with 4σ significance. Rescaling photochemical model profiles from Moses & Poppe to match our observed column abundances implies similar external water fluxes for both planets: × 104 cm−2 s−1 for Uranus and ×104 cm−2 s−1 for Neptune. This suggests that Neptune’s ∼4 times greater observed water column abundance is primarily caused by its warmer stratosphere preventing loss by condensation, rather than by a significantly more intense external source. To reconcile these water fluxes with other stratospheric oxygen species (CO and CO2) requires either a significant CO component in interplanetary dust particles (Uranus) or contributions from cometary impacts (Uranus, Neptune)