All along the line of sight: a closer look at opening angles and absorption regions in the atmospheres of transiting exoplanets

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 510:1 (2021) 620-629

Authors:

Joost P Wardenier, Vivien Parmentier, Elspeth KH Lee

Atmospheric dynamics of temperate sub-Neptunes. Part I: dry dynamics

(2021)

Authors:

Hamish Innes, Raymond T Pierrehumbert

Isotopic composition of CO2 in the atmosphere of Mars: Fractionation by diffusive separation observed by the ExoMars Trace Gas Orbiter

Journal of Geophysical Research: Planets American Geophysical Union 126:12 (2021) e2021JE006992

Authors:

Juan Alday, Colin F Wilson, Patrick GJ Irwin, Alexander Trokhimovskiy, Franck Montmessin, Anna A Fedorova, Denis A Belyaev, Kevin S Olsen, O Korablev, Franck Lefèvre, Ashwin S Braude, Lucio Baggio, Andrey Patrakeev, Alexey Shakun

Abstract:

Isotopic ratios in atmospheric CO2 are shaped by various processes throughout Mars' history, and can help understand what the atmosphere of early Mars was like to sustain liquid water on its surface. In this study, we monitor the O and C isotopic composition of CO2 between 70 and 130 km for more than half a Martian year using solar occultation observations by the Atmospheric Chemistry Suite onboard the ExoMars Trace Gas Orbiter. We find the vertical trends of the isotopic ratios to be consistent with the expectations from diffusive separation above the homopause, with average values below this altitude being consistent with Earth-like fractionation (δ13C = −3 ± 37‰; δ18O = −29 ± 38‰; and δ17O = −11 ± 41‰). Using these measurements, we estimate that at least 20%–40% of primordial C on Mars has escaped to space throughout history. The total amount of C lost from the atmosphere is likely to be well in excess of this lower limit, due to carbonate formation and further sink processes. In addition, we propose a photochemical transfer of light O from H2O to CO2 to explain the larger enrichment in the 18O/16O ratio in H2O than in CO2.

Convection modeling of pure-steam atmospheres

Astrophysical Journal Letters American Astronomical Society 923:1 (2021) L15

Authors:

Xianyu Tan, Maxence Lefèvre, Raymond T Pierrehumbert

Abstract:

Condensable species are crucial to shaping planetary climate. A wide range of planetary climate systems involve understanding nondilute condensable substances and their influence on climate dynamics. There has been progress on large-scale dynamical effects and on 1D convection parameterization, but resolved 3D moist convection remains unexplored in nondilute conditions, though it can have a profound impact on temperature/humidity profiles and cloud structure. In this work, we tackle this problem for pure-steam atmospheres using three-dimensional, high-resolution numerical simulations of convection in postrunaway atmospheres. We show that the atmosphere is composed of two characteristic regions, an upper condensing region dominated by gravity waves and a lower noncondensing region characterized by convective overturning cells. Velocities in the condensing region are much smaller than those in the lower, noncondensing region, and the horizontal temperature variation is small. Condensation in the thermal photosphere is largely driven by radiative cooling and tends to be statistically homogeneous. Some condensation also happens deeper, near the boundary of the condensing region, due to triggering by gravity waves and convective penetrations and exhibits random patchiness. This qualitative structure is insensitive to varying model parameters, but quantitative details may differ. Our results confirm theoretical expectations that atmospheres close to the pure-steam limit do not have organized deep convective plumes in the condensing region. The generalized convective parameterization scheme discussed in Ding & Pierrehumbert is appropriate for handling the basic structure of atmospheres near the pure-steam limit but cannot capture gravity waves and their mixing which appear in 3D convection-resolving models.

Mapping the pressure-dependent day-night temperature contrast of a strongly irradiated atmosphere with HST spectroscopic phase curve

Astronomical Journal IOP Publishing 163:1 (2021) 8

Authors:

Ben WP Lew, Daniel Apai, Yifan Zhou, Mark Marley, Lc Mayorga, Xianyu Tan, Vivien Parmentier, Sarah Casewell, Siyi Xu

Abstract:

Many brown dwarfs are on ultrashort-period and tidally locked orbits around white dwarf hosts. Because of these small orbital separations, the brown dwarfs are irradiated at levels similar to hot Jupiters. Yet, they are easier to observe than hot Jupiters because white dwarfs are fainter than main-sequence stars at near-infrared wavelengths. Irradiated brown dwarfs are, therefore, ideal hot Jupiter analogs for studying the atmospheric response under strong irradiation and fast rotation. We present the 1.1–1.67 μm spectroscopic phase curve of the irradiated brown dwarf (SDSS1411-B) in the SDSS J141126.20 + 200911.1 brown dwarf–white dwarf binary with the near-infrared G141 grism of the Hubble Space Telescope Wide Field Camera 3. SDSS1411-B is a 50MJup brown dwarf with an irradiation temperature of 1300 K and has an orbital period of 2.02864 hr. Our best-fit model suggests a phase-curve amplitude of 1.4% and places an upper limit of 11° for the phase offset from the secondary eclipse. After fitting the white dwarf spectrum, we extract the phase-resolved brown dwarf emission spectra. We report a highly wavelength-dependent day–night spectral variation, with a water-band flux variation of about 360% ± 70% and a comparatively small J-band flux variation of 37% ± 2%. By combining the atmospheric modeling results and the day–night brightness temperature variations, we derive a pressure-dependent temperature contrast. We discuss the difference in the spectral features of SDSS1411-B and hot Jupiter WASP-43b, as well as the lower-than-predicted day–night temperature contrast of J4111-BD. Our study provides the high-precision observational constraints on the atmospheric structures of an irradiated brown dwarf at different orbital phases.