Design of the HARMONI pyramid WFS module

AO4ELT 2019 - Proceedings 6th Adaptive Optics for Extremely Large Telescopes (2019)

Authors:

N Schwartz, JF Sauvage, E Renault, C Correia, B Neichel, T Fusco, K Dohlen, K El Hadi, C Petit, E Choquet, V Chambouleyron, J Paufique, F Clarke, N Thatte, I Bryson

Abstract:

Current designs for all three extremely large telescopes show the overwhelming adoption of the pyramid wavefront sensor (P-WFS) as the WFS of choice for adaptive optics (AO) systems sensing on natural guide stars (NGS) or extended objects. The key advantages of the P-WFS over the Shack-Hartmann are known and are mainly provided by the improved sensitivity (fainter NGS) and reduced sensitivity to spatial aliasing. However, robustness and tolerances of the P-WFS for the ELTs are not currently well understood. In this paper, we present simulation results for the single-conjugate AO mode of HARMONI, a visible and near-infrared integral field spectrograph for the European Extremely Large Telescope. We first explore the wavefront sensing issues related to the telescope itself; namely the island effect (i.e. differential piston) and M1 segments phasing errors. We present mitigation strategies to the island effect and their performance. We then focus on some performance optimisation aspects of the AO design to explore the impact of the RTC latency and the optical gain issues, which will in particular affect the high-contrast mode of HARMONI. Finally, we investigate the influence of the quality of glass pyramid prism itself, and of optical aberrations on the final AO performance. By relaxing the tolerances on the fabrication of the prism, we are able to reduce hardware costs and simplify integration. We show the importance of calibration (i.e. updating the control matrix) to capture any displacement of the telescope pupil and rotation of the support structure for M4. We also show the importance of the number of pixels used for wavefront sensing to relax tolerances of the pyramid prism. Finally, we present a detailed optical design of the pyramid prism, central element of the P-WFS.

Design of the HARMONI pyramid WFS module

AO4ELT 2019 - Proceedings 6th Adaptive Optics for Extremely Large Telescopes (2019)

Authors:

N Schwartz, JF Sauvage, E Renault, C Correia, B Neichel, T Fusco, K Dohlen, K El Hadi, C Petit, E Choquet, V Chambouleyron, J Paufique, F Clarke, N Thatte, I Bryson

Abstract:

© 2019 AO4ELT 2019 - Proceedings 6th Adaptive Optics for Extremely Large Telescopes. All rights reserved. Current designs for all three extremely large telescopes show the overwhelming adoption of the pyramid wavefront sensor (P-WFS) as the WFS of choice for adaptive optics (AO) systems sensing on natural guide stars (NGS) or extended objects. The key advantages of the P-WFS over the Shack-Hartmann are known and are mainly provided by the improved sensitivity (fainter NGS) and reduced sensitivity to spatial aliasing. However, robustness and tolerances of the P-WFS for the ELTs are not currently well understood. In this paper, we present simulation results for the single-conjugate AO mode of HARMONI, a visible and near-infrared integral field spectrograph for the European Extremely Large Telescope. We first explore the wavefront sensing issues related to the telescope itself; namely the island effect (i.e. differential piston) and M1 segments phasing errors. We present mitigation strategies to the island effect and their performance. We then focus on some performance optimisation aspects of the AO design to explore the impact of the RTC latency and the optical gain issues, which will in particular affect the high-contrast mode of HARMONI. Finally, we investigate the influence of the quality of glass pyramid prism itself, and of optical aberrations on the final AO performance. By relaxing the tolerances on the fabrication of the prism, we are able to reduce hardware costs and simplify integration. We show the importance of calibration (i.e. updating the control matrix) to capture any displacement of the telescope pupil and rotation of the support structure for M4. We also show the importance of the number of pixels used for wavefront sensing to relax tolerances of the pyramid prism. Finally, we present a detailed optical design of the pyramid prism, central element of the P-WFS.

NLTE Stellar Population Synthesis of Globular Clusters Using Synthetic Integrated Light Spectra. II. Expanded Photometry and Sensitivity of Near-IR Spectral Features to Cluster Age and Metallicity

The Astronomical Journal American Astronomical Society 157:1 (2019) 10

Authors:

Mitchell E Young, C Ian Short

pyaneti: a fast and powerful software suite for multiplanet radial velocity and transit fitting

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 482:1 (2019) 1017-1030

Authors:

O Barragán, D Gandolfi, G Antoniciello

A practical guide to the analysis of non-response and attrition in longitudinal research using a real data example

International Journal of Behavioral Development SAGE Publications 43:1 (2019) 24-34

Authors:

Nora L Eisner, Aja L Murray, Manuel Eisner, Denis Ribeaud