Spin-orbit alignment and magnetic activity in the young planetary system AU Mic

Astronomy & Astrophysics, Volume 641, id.L1, 11 pp.

Authors:

Martioli, E.; Hébrard, G.; Moutou, C.; Donati, J. -F.; Artigau, É.; Cale, B.; Cook, N. J.; Dalal, S.; Delfosse, X.; Forveille, T.; Gaidos, E.; Plavchan, P.; Berberian, J.; Carmona, A.; Cloutier, R.; Doyon, R.; Fouqué, P.; Klein, B.; Lecavelier des Etangs, A.; Manset, N. Morin, J.; Tanner, A.; Teske, J.; Wang, S.

Abstract:

We present high-resolution near-infrared spectropolarimetric observations using the SPIRou instrument at Canada-France-Hawaii Telescope (CFHT) during a transit of the recently detected young planet AU Mic b, with supporting spectroscopic data from iSHELL at NASA InfraRed Telescope Facility. We detect Zeeman signatures in the Stokes V profiles and measure a mean longitudinal magnetic field of ¯Bℓ = 46.3 ± 0.7 G. Rotationally modulated magnetic spots likely cause long-term variations of the field with a slope of dBℓ/dt = -108.7 ± 7.7 G d-1. We apply the cross-correlation technique to measure line profiles and obtain radial velocities through CCF template matching. We find an empirical linear relationship between radial velocity and Bℓ, which allows us to estimate the radial-velocity induced by stellar activity through rotational modulation of spots for the five hours of continuous monitoring of AU Mic with SPIRou. We model the corrected radial velocities for the classical Rossiter-McLaughlin effect, using MCMC to sample the posterior distribution of the model parameters. This analysis shows that the orbit of AU Mic b is prograde and aligned with the stellar rotation axis with a sky-projected spin-orbit obliquity of λ = 0°-15°+18°. The aligned orbit of AU Mic b indicates that it formed in the protoplanetary disk that evolved into the current debris disk around AU Mic.

Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated from the summit of Maunakea by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. Based on observations obtained with SPIRou, an international project led by Institut de Recherche en Astrophysique et Planétologie, Toulouse, France.

The distribution of dark matter and gas spanning 6 Mpc around the post-merger galaxy cluster MS 0451-03

Monthly Notices of the Royal Astronomical Society, Volume 496, Issue 3, pp.4032-4050

Authors:

Tam, Sut-Ieng; Jauzac, Mathilde; Massey, Richard; Harvey, David; Eckert, Dominique; Ebeling, Harald; Ellis, Richard S.; Ghirardini, Vittorio; Klein, Baptiste; Kneib, Jean-Paul; Lagattuta, David; Natarajan, Priyamvada; Robertson, Andrew; Smith, Graham P.
Abstract

Abstract:

Using the largest mosaic of Hubble Space Telescope images around a galaxy cluster, we map the distribution of dark matter throughout an ∼6 × 6 Mpc2 area centred on the cluster MS 0451-03 (z = 0.54, M200=1.65×1015M⊙ ). Our joint strong- and weak-lensing analysis shows three possible filaments extending from the cluster, encompassing six group-scale substructures. The dark matter distribution in the cluster core is elongated, consists of two distinct components, and is characterized by a concentration parameter of c200 = 3.79 ± 0.36. By contrast, XMM-Newton observations show the gas distribution to be more spherical, with excess entropy near the core, and a lower concentration of c200=2.35+0.89−0.70 (assuming hydrostatic equilibrium). Such a configuration is predicted in simulations of major mergers 2-7 Gyr after the first core passage, when the two dark matter haloes approach second turnaround, and before their gas has relaxed. This post-merger scenario finds further support in optical spectroscopy of the cluster's member galaxies, which shows that star formation was abruptly quenched 5 Gyr ago. MS 0451-03 will be an ideal target for future studies of the growth of structure along filaments, star formation processes after a major merger, and the late-stage evolution of cluster collisions.

A robust, template-free approach to precise radial velocity extraction

(2019)

Authors:

Vinesh M Rajpaul, Suzanne Aigrain, Lars A Buchhave

Transit signatures of inhomogeneous clouds on hot Jupiters: insights from microphysical cloud modeling

Astrophysical Journal American Astronomical Society 887:2 (2019) 170

Authors:

Diana Powell, Tom Louden, Laura Kreidberg, Xi Zhang, Peter Gao, Vivien Parmentier

Abstract:

We determine the observability in transmission of inhomogeneous cloud cover on the limbs of hot Jupiters through post-processing a general circulation model to include cloud distributions computed using a cloud microphysics model. We find that both the east and west limbs often form clouds, but that the different properties of these clouds enhance the limb-to-limb differences compared to the clear case. Using the James Webb Space Telescope, it should be possible to detect the presence of cloud inhomogeneities by comparing the shape of the transit light curve at multiple wavelengths because inhomogeneous clouds impart a characteristic, wavelength-dependent signature. This method is statistically robust even with limited wavelength coverage, uncertainty on limb-darkening coefficients, and imprecise transit times. We predict that the short-wavelength slope varies strongly with temperature. The hot limbs of the hottest planets form higher-altitude clouds composed of smaller particles, leading to a strong Rayleigh slope. The near-infrared spectral features of clouds are almost always detectable, even when no spectral slope is visible in the optical. In some of our models a spectral window between 5 and 9 μm can be used to probe through the clouds and detect chemical spectral features. Our cloud particle size distributions are not lognormal and differ from species to species. Using the area- or mass-weighted particle size significantly alters the relative strength of the cloud spectral features compared to using the predicted size distribution. Finally, the cloud content of a given planet is sensitive to a species' desorption energy and contact angle, two parameters that could be constrained experimentally in the future.

Black Hole-Galaxy Scaling Relation Evolution From z~2.5: Simulated Observations With HARMONI on the ELT

Frontiers in Astronomy and Space Sciences Frontiers 6 (2019) 73

Authors:

Begoña García-Lorenzo, Ana Monreal-Ibero, Evencio Mediavilla, Miguel Pereira-Santaella, Niranjan Thatte