Demonstrating GWP*: a means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants

Environmental Research Letters IOP Publishing 15:4 (2020) 044023

Authors:

John Michael Lynch, Michelle Cain, Raymond T Pierrehumbert, Myles Allen

Abstract:

The atmospheric lifetime and radiative impacts of different climate pollutants can both differ markedly, so metrics that equate emissions using a single scaling factor, such as the 100-year Global Warming Potential (GWP100), can be misleading. An alternative approach is to report emissions as 'warming-equivalents' that result in similar warming impacts without requiring a like-for-like weighting per emission. GWP*, an alternative application of GWPs where the CO2-equivalence of short-lived climate pollutant (SLCP) emissions is predominantly determined by changes in their emission rate, provides a straightforward means of generating warming-equivalent emissions. In this letter we illustrate the contrasting climate impacts resulting from emissions of methane, a short-lived greenhouse gas, and CO2, and compare GWP100 and GWP* CO2-equivalents for a number of simple emissions scenarios. We demonstrate that GWP* provides a useful indication of warming, while conventional application of GWP100 falls short in many scenarios and particularly when methane emissions are stable or declining, with important implications for how we consider 'zero emission' or 'climate neutral' targets for sectors emitting different compositions of gases. We then illustrate how GWP* can provide an improved means of assessing alternative mitigation strategies. GWP* allows warming-equivalent emissions to be calculated directly from CO2-equivalent emissions reported using GWP100, consistent with the "Paris Rulebook" agreed by the UNFCCC. It provides a direct link between emissions and anticipated warming impacts, supporting stocktakes of progress towards a long-term temperature goal and compatible with cumulative emissions budgets.

Evidence for H2 dissociation and recombination heat transport in the atmosphere of KELT-9b

Astrophysical Journal Letters American Astronomical Society 888:2 (2020) L15

Authors:

M Mansfield, JL Bean, KB Stevenson, TD Komacek, TJ Bell, Xianyu Tan, M Malik, TG Beatty, I Wong, NB Cowan, L Dang, J-M Désert, JJ Fortney, BS Gaudi, D Keating, EM-R Kempton, L Kreidberg, V Parmentier, KG Stassun

A robust, template-free approach to precise radial velocity extraction

Monthly Notices of the Royal Astronomical Society Oxford University Press 492:3 (2020) 3960-3983

Authors:

VM Rajpaul, S Aigrain, LA Buchhave

Abstract:

Doppler spectroscopy is a powerful tool for discovering and characterizing exoplanets. For decades, the standard approach to extracting radial velocities (RVs) has been to cross-correlate observed spectra with a weighted template mask. While still widely used, this approach is known to suffer numerous drawbacks, and so in recent years increasing attention has been paid to developing new and improved ways of extracting RVs. In this proof-of-concept paper, we present a simple yet powerful approach to RV extraction. We use Gaussian processes to model and align all pairs of spectra with each other; we combine the pairwise RVs thus obtained to produce accurate differential stellar RVs, without constructing any template. Doing this on a highly localized basis enables a data-driven approach to identifying and mitigating spectral contamination, even without the input of any prior astrophysical knowledge. We show that a crude implementation of this method applied to an inactive standard star yields RVs with comparable precision to and significantly lower rms variation than RVs from industry-standard pipelines. Though amenable to numerous improvements, even in its basic form presented here our method could facilitate the study of smaller planets around a wider variety of stars than has previously been possible.

Erratum: “An 11 Earth-mass, Long-period Sub-Neptune Orbiting a Sun-like Star” (2019, AJ, 158, 165)

The Astronomical Journal American Astronomical Society 159:1 (2020) 34-34

Authors:

Andrew W Mayo, Vinesh M Rajpaul, Lars A Buchhave, Courtney D Dressing, Annelies Mortier, Li Zeng, Charles D Fortenbach, Suzanne Aigrain, Aldo S Bonomo, Andrew Collier Cameron, David Charbonneau, Adrien Coffinet, Rosario Cosentino, Mario Damasso, Xavier Dumusque, AF Martinez Fiorenzano, Raphaëlle D Haywood, David W Latham, Mercedes López-Morales, Luca Malavolta, Giusi Micela, Emilio Molinari, Logan Pearce, Francesco Pepe, David Phillips, Giampaolo Piotto, Ennio Poretti, Ken Rice, Alessandro Sozzetti, Stephane Udry

Detection of Ionized Calcium in the Atmosphere of the Ultra-hot Jupiter KELT-9b

The Astrophysical Journal Letters American Astronomical Society 888:1 (2020) l13

Authors:

Jake D Turner, Ernst JW de Mooij, Ray Jayawardhana, Mitchell E Young, Luca Fossati, Tommi Koskinen, Joshua D Lothringer, Raine Karjalainen, Marie Karjalainen