Extending the Frontier of Spatially-Resolved Supermassive Black Hole Mass Measurements to at 1 ≲ z ≲ 2: Simulations with ELT/MICADO High-Resolution Mass Models and HARMONI Integral-Field Stellar Kinematics

Monthly Notices of the Royal Astronomical Society (2026) stag238

Authors:

Dieu D Nguyen, Michele Cappellari, Tinh QT Le, Hai N Ngo, Elena Gallo, Niranjan Thatte, Fan Zou, Tien HT Ho, Tuan N Le, Huy G Tong, Miguel Pereira-Santaella

Abstract:

Current spatially resolved kinematic measurements of supermassive black hole (SMBH) masses are largely confined to the local Universe (distances ≲ 100 Mpc). We investigate the potential of the Extremely Large Telescope’s (ELT) first-light instruments, MICADO and HARMONI, to extend these dynamical measurements to galaxies at redshift 1 ≲ z ≲ 2. We select a sample of five bright, massive, quiescent galaxies at these redshifts, adopting their Sérsic profiles, from HST photometry, as their intrinsic surface brightness distributions. Based on these intrinsic models, we generate mock MICADO images using SimCADO and mock HARMONI integral-field spectroscopic data cubes using hsim. The HARMONI simulations utilize input stellar kinematics derived from Jeans Anisotropic Models (JAM). We then process these mock observations: the simulated MICADO images are fitted with Multi-Gaussian Expansion (MGE) to derive stellar mass models, and stellar kinematics are extracted from mock HARMONI cubes with pPXF. Finally, these derived stellar mass models and kinematics are used to constrain JAM dynamical models within a Bayesian framework. Our analysis demonstrates that SMBH masses can be recovered with an accuracy of ∼10 %. We find that MICADO can provide detailed stellar mass models with ∼1 hour of on-source exposure. HARMONI requires longer minimum integrations for reliable stellar kinematic measurements of SMBHs. The required on-source time scales with apparent brightness, ranging from 5–7.5 hours for galaxies at z ≈ 1 (F814W, 20–20.5 mag) to 5 hours for galaxies at 1 < z ≲ 2 (F160W, 20.8 mag). These findings highlight the ELT’s capability to push the frontier of SMBH mass measurements to z ≈ 2, enabling crucial tests of SMBH-galaxy co-evolution at the top end of the galaxies mass function.

Exoplanet Atmospheres at High Spectral Resolution

Chapter in Handbook of Exoplanets, Springer Nature (2026) 1-38

Abstract:

The spectrum of an exoplanet reveals the physical, chemical, and biological processes that have shaped its history and govern its future. However, observations of exoplanet spectra are complicated by the overwhelming glare of their host stars. Here, we focus on high-resolution spectroscopy (HRS) (R∼5,000−140,000$$R\,{\sim }\,5{,}000-140{,}000$$), which helps disentangle and isolate the exoplanet’s spectrum. HRS resolves molecular features into a dense forest of individual lines in a pattern that is unique for a given molecule. For close-in planets, the spectral lines undergo large Doppler shifts during the planet’s orbit, while the host star and Earth’s spectral features remain essentially stationary, enabling a velocity separation of the planet. For slower-moving, wide-orbit planets, HRS, aided by high contrast imaging, instead isolates their spectra using their spatial separation (high contrast spectroscopy; HCS). The planet’s spectral lines are compared with HRS model atmospheric spectra, typically using cross-correlation to sum their signals. It is essentially a form of fingerprinting for exoplanet atmospheres and works for both transiting and non-transiting planets. It measures their orbital velocity, true mass, and simultaneously characterizes their atmosphere. The unique sensitivity of HRS to the depth, shape, and position of the planet’s spectral lines allows it to measure atmospheric composition, structure, clouds, and dynamics, including day-to-night winds and equatorial jets, plus its rotation period and even its magnetic field. These are extracted using statistically robust log-likelihood frameworks and match space-based instruments in their precision. This chapter describes the HRS technique in detail and concludes with future prospects with Extremely Large Telescopes to identify biosignatures on nearby rocky worlds and map features in the atmospheres of giant exoplanets.

JWST NIRSpec finds no clear signs of an atmosphere on TOI-1685 b

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 545:4 (2026) staf2187

Authors:

Chloe E Fisher, Matthew J Hooton, Amélie Gressier, Merlin Zgraggen, Meng Tian, Kevin Heng, Natalie H Allen, Richard D Chatterjee, Brett M Morris, Nicholas W Borsato, Néstor Espinoza, Daniel Kitzmann, Tobias G Meier, Lars A Buchhave, Adam J Burgasser, Brice-Olivier Demory, Mark Fortune, H Jens Hoeijmakers, Raphael Luque, Erik A Meier Valdés, João M Mendonça, Bibiana Prinoth, Alexander D Rathcke, Jake Taylor

Abstract:

ABSTRACT Determining the prevalence of atmospheres on terrestrial planets is a core objective in exoplanetary science. While M dwarf systems offer a promising opportunity, conclusive observations of terrestrial atmospheres have remained elusive, with many yielding flat transmission spectra. We observe four transits of the hot terrestrial planet TOI-1685 b using James Webb Space Telescope (JWST)’s Near Infrared Spectrograph (NIRSpec) G395H instrument. Combining this with the transit from the previously observed phase curve of the planet with the same instrument, we perform a detailed analysis to determine the possibility of an atmosphere on TOI-1685 b. From our retrievals, the Bayesian evidence favours a simple flat line model, indicating no evidence for an atmosphere on TOI-1685 b, in line with results from the phase curve analysis. Our results show that hydrogen-dominated atmospheres can be confidently ruled out. For heavier, secondary atmospheres we find a lower limit on the mean molecular weight of $\gtrsim 10$, at a significance of ~5σ. Pure ${\rm CO}_{2}$, ${\rm SO}_{2}$, ${\rm H}_{2}{\rm O}$, and ${\rm CH}_{4}$ atmospheres, or a mixed secondary atmosphere (${\rm CO}+{\rm CO}_{2}+{\rm SO}_{2}$) could explain the data ($\Delta \ln Z&lt; 3$). However, pure ${\rm CH}_{4}$ atmospheres may be physically unlikely, and the pure ${\rm H}_{2}{\rm O}$ and ${\rm CO}_{2}$ cases require a high-altitude cloud, which could also be interpreted as a thin cloud-free atmosphere. We discuss the theoretical possibility for different types of atmosphere on this planet, and consider the effects of atmospheric escape and stellar activity on the system. Though we find that TOI-1685 b is likely a bare rock, this study also highlights the challenges of detecting secondary atmospheres on rocky planets with JWST.

Abundant hydrocarbons in a buried galactic nucleus with signs of carbonaceous grain and polycyclic aromatic hydrocarbon processing

Nature Astronomy (2026)

Authors:

I García-Bernete, M Pereira-Santaella, E González-Alfonso, M Agúndez, D Rigopoulou, FR Donnan, G Speranza, N Thatte

Abstract:

Hydrocarbons play a key role in shaping the chemistry of the interstellar medium, but their enrichment and relation with carbonaceous grains and polycyclic aromatic hydrocarbons still lack clear observational constraints. Here we report on JWST NIRSpec + MIRI/MRS infrared observations (~3–28 μm) of the local ultra-luminous infrared galaxy (ULIRG) IRAS 07251−0248, which revealed the extragalactic detection of small gas-phase hydrocarbons, such as benzene (C6H6), triacetylene (C6H2), diacetylene (C4H2), acetylene (C2H2), methane (CH4) and methyl radical (CH3), as well as deep amorphous C–H absorptions in the solid phase. The unexpectedly high abundance of these molecules indicates an extremely rich hydrocarbon chemistry not explained by high-temperature gas-phase chemistry, ice desorption or oxygen depletion. Instead, the most plausible explanation is the erosion and fragmentation of carbonaceous grains and polycyclic aromatic hydrocarbons. This scenario is supported by the correlation between the abundance of one of their main fragmentation products, C2H2, and the cosmic-ray ionization rate for a sample of local ULIRGs. These hydrocarbons are outflowing at ~160 km s−1, which may represent a potential formation pathway for hydrogenated amorphous grains. Our results indicate that IRAS 07251−0248 might not be unique but represents an extreme example of the commonly rich hydrocarbon chemistry prevalent in deeply obscured galactic nuclei.

Diversity in the haziness and chemistry of temperate sub-Neptunes

Nature Astronomy Springer Nature (2025) 1-14

Authors:

Pierre-Alexis Roy, Björn Benneke, Marylou Fournier-Tondreau, Louis-Philippe Coulombe, Caroline Piaulet-Ghorayeb, David Lafrenière, Romain Allart, Nicolas B Cowan, Lisa Dang, Doug Johnstone, Adam B Langeveld, Stefan Pelletier, Michael Radica, Jake Taylor, Loïc Albert, René Doyon, Laura Flagg, Ray Jayawardhana, Ryan J MacDonald, Jake D Turner

Abstract:

Recent transit observations of K2-18 b and TOI-270 d revealed strong molecular absorption signatures, lending credence to the idea that temperate sub-Neptunes (equilibrium temperature Teq = 250–400 K) have upper atmospheres mostly free of aerosols. These observations also indicated higher-than-expected CO2 abundances on both planets, implying bulk compositions with high water mass fractions. However, it remains unclear whether these findings hold true for all temperate sub-Neptunes. Here we present the JWST NIRSpec/PRISM 0.7–5.4-μm transmission spectrum of a third temperate sub-Neptune, the 2.4 R⊕ planet LP 791-18 c (Teq = 355 K), which is even more favourable for atmospheric characterization thanks to its small M6 host star. Intriguingly, despite the radius, mass and equilibrium temperature of LP 791-18 c being between those of K2-18 b and TOI-270 d, we find a drastically different transmission spectrum. Although we also detect methane on LP 791-18 c, its transit spectrum is dominated by strong haze scattering and there is no discernible CO2 absorption. Overall, we infer a deep metal-enriched atmosphere (246–415 times solar) for LP 791-18 c, with a CO2-to-CH4 ratio smaller than 0.07 (at 2σ), indicating less H2O in the deep envelope of LP 791-18 c and implying a relatively dry formation inside the water-ice line. These results show that sub-Neptunes that are near analogues in density and temperature can show drastically different aerosols and envelope chemistry and are intrinsically diverse beyond a simple temperature dependence.