Diversity in the haziness and chemistry of temperate sub-Neptunes

Nature Astronomy Springer Nature (2025) 1-14

Authors:

Pierre-Alexis Roy, Björn Benneke, Marylou Fournier-Tondreau, Louis-Philippe Coulombe, Caroline Piaulet-Ghorayeb, David Lafrenière, Romain Allart, Nicolas B Cowan, Lisa Dang, Doug Johnstone, Adam B Langeveld, Stefan Pelletier, Michael Radica, Jake Taylor, Loïc Albert, René Doyon, Laura Flagg, Ray Jayawardhana, Ryan J MacDonald, Jake D Turner

Abstract:

Recent transit observations of K2-18 b and TOI-270 d revealed strong molecular absorption signatures, lending credence to the idea that temperate sub-Neptunes (equilibrium temperature Teq = 250–400 K) have upper atmospheres mostly free of aerosols. These observations also indicated higher-than-expected CO2 abundances on both planets, implying bulk compositions with high water mass fractions. However, it remains unclear whether these findings hold true for all temperate sub-Neptunes. Here we present the JWST NIRSpec/PRISM 0.7–5.4-μm transmission spectrum of a third temperate sub-Neptune, the 2.4 R⊕ planet LP 791-18 c (Teq = 355 K), which is even more favourable for atmospheric characterization thanks to its small M6 host star. Intriguingly, despite the radius, mass and equilibrium temperature of LP 791-18 c being between those of K2-18 b and TOI-270 d, we find a drastically different transmission spectrum. Although we also detect methane on LP 791-18 c, its transit spectrum is dominated by strong haze scattering and there is no discernible CO2 absorption. Overall, we infer a deep metal-enriched atmosphere (246–415 times solar) for LP 791-18 c, with a CO2-to-CH4 ratio smaller than 0.07 (at 2σ), indicating less H2O in the deep envelope of LP 791-18 c and implying a relatively dry formation inside the water-ice line. These results show that sub-Neptunes that are near analogues in density and temperature can show drastically different aerosols and envelope chemistry and are intrinsically diverse beyond a simple temperature dependence.

JWST NIRSpec finds no clear signs of an atmosphere on TOI-1685 b

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf2187

Authors:

Chloe E Fisher, Matthew J Hooton, Amélie Gressier, Merlin Zgraggen, Meng Tian, Kevin Heng, Natalie H Allen, Richard D Chatterjee, Brett M Morris, Nicholas W Borsato, Néstor Espinoza, Daniel Kitzmann, Tobias G Meier, Lars A Buchhave, Adam J Burgasser, Brice-Olivier Demory, Mark Fortune, H Jens Hoeijmakers, Raphael Luque, Erik A Meier Valdés, João M Mendonça, Bibiana Prinoth, Alexander D Rathcke, Jake Taylor

Abstract:

Abstract Determining the prevalence of atmospheres on terrestrial planets is a core objective in exoplanetary science. While M dwarf systems offer a promising opportunity, conclusive observations of terrestrial atmospheres have remained elusive, with many yielding flat transmission spectra. We observe four transits of the hot terrestrial planet TOI-1685 b using JWST’s NIRSpec G395H instrument. Combining this with the transit from the previously-observed phase curve of the planet with the same instrument, we perform a detailed analysis to determine the possibility of an atmosphere on TOI-1685 b. From our retrievals, the Bayesian evidence favours a simple flat line model, indicating no evidence for an atmosphere on TOI-1685 b, in line with results from the phase curve analysis. Our results show that hydrogen-dominated atmospheres can be confidently ruled out. For heavier, secondary atmospheres we find a lower limit on the mean molecular weight of ≳ 10, at a significance of ∼5σ. Pure CO2, SO2, H2O, and CH4 atmospheres, or a mixed secondary atmosphere (CO + CO2 + SO2) could explain the data (Δln Z < 3). However, pure CH4 atmospheres may be physically unlikely, and the pure H2O and CO2 cases require a high-altitude cloud, which could also be interpreted as a thin cloud-free atmosphere. We discuss the theoretical possibility for different types of atmosphere on this planet, and consider the effects of atmospheric escape and stellar activity on the system. Though we find that TOI-1685 b is likely a bare rock, this study also highlights the challenges of detecting secondary atmospheres on rocky planets with JWST.

Chasing the storm: investigating the application of high-contrast imaging techniques in producing precise exoplanet light curves

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 544:4 (2025) 3191-3209

Authors:

Ben J Sutlieff, David S Doelman, Jayne L Birkby, Matthew A Kenworthy, Jordan M Stone, Frans Snik, Steve Ertel, Beth A Biller, Charles E Woodward, Andrew J Skemer, Jarron M Leisenring, Alexander J Bohn, Luke T Parker

Abstract:

ABSTRACT Substellar companions such as exoplanets and brown dwarfs exhibit changes in brightness arising from top-of-atmosphere inhomogeneities, providing insights into their atmospheric structure and dynamics. This variability can be measured in the light curves of high-contrast companions from the ground by combining differential spectrophotometric monitoring techniques with high-contrast imaging. However, ground-based observations are sensitive to the effects of turbulence in Earth’s atmosphere, and while adaptive optics (AO) systems and bespoke data processing techniques help to mitigate these, residual systematics can limit photometric precision. Here, we inject artificial companions to data obtained with an AO system and a vector Apodizing Phase Plate coronagraph to test the level to which telluric and other systematics contaminate such light curves, and thus how well their known variability signals can be recovered. We find that varying companions are distinguishable from non-varying companions, but that variability amplitudes and periods cannot be accurately recovered when observations cover only a small number of periods. Residual systematics remain above the photon noise in the light curves but have not yet reached a noise floor. We also simulate observations to assess how specific systematic sources, such as non-common path aberrations and AO residuals, can impact aperture photometry as a companion moves through pupil-stabilized data. We show that only the lowest order aberrations are likely to affect flux measurements, but that thermal background noise is the dominant source of scatter in raw companion photometry. Predictive control and focal-plane wavefront sensing techniques will help to further reduce systematics in data of this type.

Separating Flare and Secondary Atmospheric Signals with RADYN Modeling of Near-infrared JWST Transmission Spectroscopy Observations of TRAPPIST-1

The Astrophysical Journal Letters American Astronomical Society 994:1 (2025) L31

Authors:

Ward S Howard, Adam F Kowalski, Michael Radica, Laura Flagg, Valeriy Vasilyev, Benjamin V Rackham, Guadalupe Tovar Mendoza, Meredith A MacGregor, Alexander I Shapiro, Jake Taylor, Louis-Philippe Coulombe, Olivia Lim, David Lafrenière

Abstract:

Although TRAPPIST-1’s temperate planets have the highest transmission signals of any known system, flares contaminate 50%–70% of transits at the 1000 ppm level, far above 100 ppm secondary atmospheric signals. Efforts to mitigate flare contamination and assess impacts on radiation environments are each hampered by a lack of empirical spectral analysis and physics-based modeling. We present spectrotemporal analysis and radiative-hydrodynamic modeling of 5.5 hr of NIRISS and NIRSpec observations of six TRAPPIST-1 flares of 2.2–8.7 × 1030 erg. The flare lines and continua are characterized using grid searches of RADYN beam-heating models spanning 104 times in electron beam parameters. Best-fit models indicate these flares result from moderate-intensity beams with emergent electron fluxes of Fe = 1012 erg s−1 cm−2 and energies ≤37 keV, although all models overpredict the Paschen jump. These models predict X-ray and extreme UV (XUV), far-UV, and near-UV counterparts to the IR peak fluxes of 8.9–28.9 × 1027, 4.3–13.9 × 1026, and 3.4–11.4 × 1027 erg s−1, respectively. Scaling the flare rate into the XUV suggests flaring contributes 1.35 −0.15+2.0× quiescence yr−1. We bin integrations of similar flare effective temperature to construct fiducial flare spectra from 2000 to 4500 K, in order to develop separate empirical and RADYN-based mitigation pipelines. Both pipelines are applied to all 5.5 hr of R = 10 data, resulting in maximum residuals from 1 to 2.8 μm of 100–140 ppm and typical residuals of 54 ± 14 and 65 ± 17 ppm for the empirical and RADYN-based pipelines, respectively. Injection testing supports a 3σ detection capability for CO2 atmospheres with features of 150–250 ppm, with weak evidence (Bayes factor ≈ 3) still obtained at 130 ppm. Our results motivate multiwavelength observations to improve model fidelity and test high-energy predictions.

The PAH 3.4 micron feature as a tracer of shielding in the Orion Bar and NGC 6240

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf2047

Authors:

N Thatte, D Rigopoulou, Fr Donnan, I Garcia-Bernete, M Pereira-Santaella, B Draine, O Veenema, B Kerkeni, A Alonso-Herrero, L Hermosa Muñoz, G Speranza

Abstract:

<jats:title>Abstract</jats:title> <jats:p>We have carried out a detailed analysis of the 3.4 μm spectral feature arising from Polycyclic Aromatic Hydrocarbons (PAH), using JWST archival data. For the first time in an external galaxy (NGC 6240), we have identified two distinct spectral components of the PAH 3.4 μm feature: a shorter wavelength component at 3.395 μm, which we attribute to short aliphatic chains tightly attached to the aromatic rings of the PAH molecules; and a longer wavelength feature at 3.405 μm that arises from longer, more fragile, aliphatic chains that are weakly attached to the parent PAH molecule. These longer chains are more easily destroyed by far-ultraviolet photons (&amp;gt;5eV) and PAH thermal emission only occurs where PAH molecules are shielded from more energetic photons by dense molecular gas. We see a very strong correlation in the morphology of the PAH 3.395 μm feature with the PAH 3.3 μm emission, the latter arising from robust aromatic PAH molecules. We also see an equally strong correlation between the PAH 3.405 μm morphology and the warm molecular gas, as traced by H2 vibrational lines. We show that the flux ratio PAH 3.395/PAH 3.405 &amp;lt; 0.3 corresponds strongly to regions where the PAH molecules are shielded by dense molecular gas, so that only modestly energetic UV photons penetrate to excite the PAHs. Our work shows that PAH 3.405 μm and PAH 3.395 μm emission features can provide robust diagnostics of the physical conditions of the interstellar medium in external galaxies, and can be used to quantify the energies of the photon field penetrating molecular clouds.</jats:p>