High-contrast observations with slicer-based integral field spectrographs 1: Simulations

Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)

Authors:

GS Salter, NA Thatte, M Tecza, F Clarke, C Verinaud, ME Kasper

Abstract:

As part of the Phase A study for the EPICS instrument, we investigate if there are any contrast limitations imposed by the choice of the integral field spectrograph (IFS) technology, and if so, to determine the contrast limits applicable to each technology. In this document we investigate (through simulations) the contrast limitations inherent in a slicer based IFS. Current results show the achievable contrast with the slicer to be promising when taking into consideration the fact that the central region of the apodized PSF has not been masked. Limiting the maximum intensity by a factor of 100-1000 using an obscuring focal plane mask should also reduce the intensity of the secondary speckles by an equivalent factor. Furthermore, the secondary speckles created in the slicer spectrograph only influence the few slices where the bright central core is imaged. By orienting these slices to lie along the spider arms of the E-ELT secondary, the fraction of the field of view affected can be minimized. © 2010 Copyright SPIE - The International Society for Optical Engineering.

KMOS: Assembly, integration and testing of three 0.8-2.5 micron spectrographs

Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)

Authors:

RJ Masters, IJ Lewis, IAJ Tosh, M Tecza, J Lynn, REJ Watkins, A Clack, RL Davies, NA Thatte, M Tacon, R Makin, J Temple, A Pearce

Abstract:

KMOS is a second generation instrument in construction for use at the European Southern Observatory (ESO) Very Large Telescope (VLT). It operates in the near-infrared (0.8 to 2.5 microns) and employs 24 deployable, image slicing integral field units (IFUs) feeding three spectrographs. The spectrographs are designed and built by a partnership of the University of Oxford and Rutherford Appleton Laboratories (RAL). We describe the assembly, integration and alignment procedures involved in the construction of these spectrographs in detail. We also present the results of the cryogenic optical tests, including the first data taken through the full spectrograph optical train and the details of the test facility and procedures involved. © 2010 Copyright SPIE - The International Society for Optical Engineering.

Recent progress on the KMOS multi-object integral-field spectrograph for ESO VLT

Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)

Authors:

R Sharples, R Bender, A Agudo Berbel, R Bennett, N Bezawada, N Bouché, D Bramall, M Casali, M Cirasuolo, P Clark, M Cliffe, R Davies, R Davies, N Drory, M Dubbeldam, A Fairley, G Finger, R Genzel, R Haefner, A Hess, P Jeffers, I Lewis, D Montgomery, J Murray, B Muschielok, N Förster Schreiber, J Pirard, S Ramsay-Howat, P Rees, J Richter, D Robertson, I Robson, S Rolt, R Saglia, J Schlichter, M Tecza, S Todd, M Wegner, E Wiezorrek

Abstract:

KMOS is a near-infrared multi-object integral-field spectrometer which is one of a suite of second-generation instruments under construction for the VLT. The instrument is being built by a consortium of UK and German institutes working in partnership with ESO and is now in the manufacture, integration and test phase. In this paper we present an overview of recent progress with the design and build of KMOS and present the first results from the subsystem test and integration. © 2010 Copyright SPIE - The International Society for Optical Engineering.

The Oxford SWIFT spectrograph: First commissioning and on-sky results

Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)

Authors:

N Thatte, M Tecza, F Clarke, T Goodsall, L Fogarty, R Houghton, G Salter, N Scott, RL Davies, A Bouchez, R Dekany

Abstract:

The Oxford SWIFT spectrograph, an I & z band (6500-10500 A) integral field spectrograph, is designed to operate as a facility instrument at the 200 inch Hale Telescope on Palomar Mountain, in conjunction with the Palomar laser guide star adaptive optics system PALAO (and its upgrade to PALM3000). SWIFT provides spectra at R(≡λ/Δλ)∼4000 of a contiguous two-dimensional field, 44 x 89 spatial pixels (spaxels) in size, at spatial scales of 0.235″;, 0.16″, and 0.08″ per spaxel. It employs two 250μm thick, fully depleted, extremely red sensitive 4k X 2k CCD detector arrays (manufactured by LBNL) that provide excellent quantum efficiency out to 1000 nm. We describe the commissioning observations and present the measured values of a number of instrument parameters. We also present some first science results that give a taste of the range of science programs where SWIFT can have a substantial impact. © 2010 Copyright SPIE - The International Society for Optical Engineering.

Possible detection of phase changes from the non-transiting planet HD 46375b by CoRoT

(2010)

Authors:

P Gaulme, M Vannier, T Guillot, B Mosser, D Mary, WW Weiss, F-X Schmider, S Bourguignon, HJ Deeg, C Régulo, S Aigrain, J Schneider, H Bruntt, S Deheuvels, J-F Donati, T Appourchaux, M Auvergne, A Baglin, F Baudin, C Catala, E Michel, R Samadi