The monitor project: A search for low mass ebs in the young open cluster M50

AIP Conference Proceedings 1094 (2009) 832-835

Authors:

JL Birkby, ST Hodgkin, S Aigrain, J Irwin

Abstract:

We present preliminary results from a high-cadence photometric monitoring survey of the 130 Myr old open cluster M50. Using the semi-automated occultation detection process developed by Miller et al. [1], we uncovered eight low mass (< 1M⊙) eclipsing binary candidates in the cluster. Preliminary analysis of spectroscopic follow-up on five of these candidates confirms their binary nature. One candidate also exhibits a systemic velocity broadly consistent with the cluster radial velocity, indicating cluster membership. Confirmation of these eight candidates as true members of the M50 cluster will allow us to provide important constraints to the mass-radius relationship for objects below 1M⊙ at ages younger than lGyr, where current observations remain scarce. © 2009 American Institute of Physics.

Noise properties of the CoRoT data: a planet-finding perspective

(2009)

Authors:

S Aigrain, F Pont, F Fressin, A Alapini, R Alonso, M Auvergne, M Barbieri, P Barge, P Borde, F Bouchy, H Deeg, R de la Reza, M Deleuil, R Dvorak, A Erikson, M Fridlund, P Gondoin, P Guterman, L Jorda, H Lammer, A Leger, A llebaria, P Magain, T Mazeh, C Moutou, M Ollivier, M Paezold, D Queloz, H Rauer, D Rouan, J Schneider, G Wuchterl, S Zucker

WASP-12b: The Hottest Transiting Extrasolar Planet Yet Discovered

\apj 693 (2009) 1920-1928-1920-1928

Authors:

L Hebb, A Collier-Cameron, B Loeillet, D Pollacco, G Hébrard, RA Street, F Bouchy, HC Stempels, C Moutou, E Simpson, S Udry, YC Joshi, RG West, I Skillen, DM Wilson, I McDonald, NP Gibson, S Aigrain, DR Anderson, CR Benn, DJ Christian, B Enoch, CA Haswell, C Hellier, K Horne, J Irwin, TA Lister, P Maxted, M Mayor, AJ Norton, N Parley, F Pont, D Queloz, B Smalley, PJ Wheatley

The Monitor Project: a search for low mass EBs in the young open cluster M50

AIP Conference Proceedings AIP Publishing 1094:1 (2009) 832-835

Authors:

JL Birkby, ST Hodgkin, S Aigrain, J Irwin, Eric Stempels

Modelling solar-like variability for the detection of Earth-like planetary transits: II. Performance of the three-spot modelling, harmonic function fitting,iterative nonlinear filtering, and sliding boxcar filtering

Astronomy and Astrophysics 495:2 (2009) 647-653

Authors:

AS Bonomo, S Aigrain, P Bordé, AF Lanza

Abstract:

Aims. As an extension of a previous work, we present a comparison of four methods of filtering solar-like variability to increase the efficiency of detection of Earth-like planetary transits by means of box-shaped transit finder algorithms. Two of these filtering methods are the harmonic fitting method and the iterative nonlinear filter that, coupled respectively with the box least-square (BLS) and box maximum likelihood algorithms, demonstrated the best performance during the first detection blind test organised inside the CoRoT consortium. The third method, the 3-spot model, is a simplified physical model of Sun-like variability and the fourth is a simple sliding boxcar filter.Methods. We apply a Monte Carlo approach by simulating a large number of 150-day light curves (as for CoRoT long runs) for different planetary radii, orbital periods, epochs of the first transit, and standard deviations of the photon shot noise. Stellar variability is given by the total solar irradiance variations as observed close to the maximum of solar cycle 23. After filtering solar variability, transits are searched for by means of the BLS algorithm.Results. We find that the iterative nonlinear filter is the best method for filtering light curves of solar-like stars when a suitable window can be chosen. As the performance of this filter depends critically on the length of its window, we point out that the window must be as long as possible, according to the magnetic activity level of the star. We show an automatic method to choose the extension of the filter window from the power spectrum of the light curves.Conclusions. The iterative nonlinear filter, when used with a suitable choice of its window, has a better performance than more complicated and computationally intensive methods of fitting solar-like variability, like the 200-harmonic fitting or the 3-spot model. © 2009 ESO.