Hotter than Expected: Hubble Space Telescope (HST)/WFC3 Phase-resolved Spectroscopy of a Rare Irradiated Brown Dwarf with Strong Internal Heat Flux

The Astrophysical Journal American Astronomical Society 948:2 (2023) 129

Authors:

Rachael C Amaro, Dániel Apai, Yifan Zhou, Ben WP Lew, Sarah L Casewell, LC Mayorga, Mark S Marley, Xianyu Tan, Joshua D Lothringer, Vivien Parmentier, Travis Barman

Photochemically produced SO2 in the atmosphere of WASP-39b.

Nature 617:7961 (2023) 483-487

Authors:

Shang-Min Tsai, Elspeth KH Lee, Diana Powell, Peter Gao, Xi Zhang, Julianne Moses, Eric Hébrard, Olivia Venot, Vivien Parmentier, Sean Jordan, Renyu Hu, Munazza K Alam, Lili Alderson, Natalie M Batalha, Jacob L Bean, Björn Benneke, Carver J Bierson, Ryan P Brady, Ludmila Carone, Aarynn L Carter, Katy L Chubb, Julie Inglis, Jérémy Leconte, Michael Line, Mercedes López-Morales, Yamila Miguel, Karan Molaverdikhani, Zafar Rustamkulov, David K Sing, Kevin B Stevenson, Hannah R Wakeford, Jeehyun Yang, Keshav Aggarwal, Robin Baeyens, Saugata Barat, Miguel de Val-Borro, Tansu Daylan, Jonathan J Fortney, Kevin France, Jayesh M Goyal, David Grant, James Kirk, Laura Kreidberg, Amy Louca, Sarah E Moran, Sagnick Mukherjee, Evert Nasedkin, Kazumasa Ohno, Benjamin V Rackham, Seth Redfield, Jake Taylor, Pascal Tremblin, Channon Visscher, Nicole L Wallack, Luis Welbanks, Allison Youngblood, Eva-Maria Ahrer, Natasha E Batalha, Patrick Behr, Zachory K Berta-Thompson, Jasmina Blecic, SL Casewell, Ian JM Crossfield, Nicolas Crouzet, Patricio E Cubillos, Leen Decin, Jean-Michel Désert, Adina D Feinstein, Neale P Gibson, Joseph Harrington, Kevin Heng, Thomas Henning, Eliza M-R Kempton, Jessica Krick, Pierre-Olivier Lagage, Monika Lendl, Joshua D Lothringer, Megan Mansfield, NJ Mayne, Thomas Mikal-Evans, Enric Palle, Everett Schlawin, Oliver Shorttle, Peter J Wheatley, Sergei N Yurchenko

Abstract:

Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability1. However, no unambiguous photochemical products have been detected in exoplanet atmospheres so far. Recent observations from the JWST Transiting Exoplanet Community Early Release Science Program2,3 found a spectral absorption feature at 4.05 μm arising from sulfur dioxide (SO2) in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of around 1,100 K (ref. 4). The most plausible way of generating SO2 in such an atmosphere is through photochemical processes5,6. Here we show that the SO2 distribution computed by a suite of photochemical models robustly explains the 4.05-μm spectral feature identified by JWST transmission observations7 with NIRSpec PRISM (2.7σ)8 and G395H (4.5σ)9. SO2 is produced by successive oxidation of sulfur radicals freed when hydrogen sulfide (H2S) is destroyed. The sensitivity of the SO2 feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of about 10× solar. We further point out that SO2 also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations.

Applying a temporal systematics model to vector Apodizing Phase Plate coronagraphic data: TRAP4vAPP

(2023)

Authors:

Pengyu Liu, Alexander J Bohn, David S Doelman, Ben J Sutlieff, Matthias Samland, Matthew A Kenworthy, Frans Snik, Jayne L Birkby, Beth A Biller, Jared R Males, Katie M Morzinski, Laird M Close, Gilles PPL Otten

Carbon monoxide emission lines reveal an inverted atmosphere in the ultra hot Jupiter WASP-33 b consistent with an eastward hot spot

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 522:2 (2023) 2145-2170

Authors:

Lennart van Sluijs, Jayne L Birkby, Joshua Lothringer, Elspeth KH Lee, Ian JM Crossfield, Vivien Parmentier, Matteo Brogi, Craig Kulesa, Don McCarthy, David Charbonneau

Revisiting K2-233 spectroscopic time-series with multidimensional Gaussian processes

Monthly Notices of the Royal Astronomical Society Oxford University Press 522:3 (2023) 3458-3471

Authors:

Oscar Barragan Villanueva, Edward Gillen, Suzanne Aigrain, Annabella Meech, Baptiste Klein, Louise Dyregaard Nielsen, Haochuan Yu, Niamh K O'Sullivan, Belinda A Nicholson, Jorge Lillo-Box

Abstract:

Detecting planetary signatures in radial velocity time-series of young stars is challenging due to their inherently strong stellar activity. However, it is possible to learn information about the properties of the stellar signal by using activity indicators measured from the same stellar spectra used to extract radial velocities. In this manuscript, we present a reanalysis of spectroscopic High Accuracy Radial Velocity Planet Searcher data of the young star K2-233, which hosts three transiting planets. We perform a multidimensional Gaussian process regression on the radial velocity and the activity indicators to characterize the planetary Doppler signals. We demonstrate, for the first time on a real data set, that the use of a multidimensional Gaussian process can boost the precision with which we measure the planetary signals compared to a one-dimensional Gaussian process applied to the radial velocities alone. We measure the semi-amplitudes of K2-233 b, c, and d as 1.31+0.81−0.74, 1.81+0.71−0.67, and 2.72+0.66−0.70 m s−1, which translate into planetary masses of 2.4+1.5−1.3, 4.6+1.8−1.7, and 10.3+2.4−2.6 M⊕, respectively. These new mass measurements make K2-233 d a valuable target for transmission spectroscopy observations with JWST. K2-233 is the only young system with two detected inner planets below the radius valley and a third outer planet above it. This makes it an excellent target to perform comparative studies, to inform our theories of planet evolution, formation, migration, and atmospheric evolution.