Natural guide-star processing for wide-field laser-assisted AO systems

Adaptive Optics Systems V Society of Photo-optical Instrumentation Engineers (2016)

Authors:

Carlos M Correia, Benoit Neichel, Jean-Marc Conan, Cyril Petit, Jean-Francois Sauvage, Thierry Fusco, Joel DR Vernet, Niranjan Thatte

Abstract:

Sky-coverage in laser-assisted AO observations largely depends on the system's capability to guide on the faintest natural guide-stars possible. Here we give an up-to-date status of our natural guide-star processing tailored to the European-ELT's visible and near-infrared (0.47 to 2.45 μm) integral field spectrograph — Harmoni.
We tour the processing of both the isoplanatic and anisoplanatic tilt modes using the spatio-angular approach whereby the wavefront is estimated directly in the pupil plane avoiding a cumbersome explicit layered estimation on the 35-layer profiles we're currently using.
Taking the case of Harmoni, we cover the choice of wave-front sensors, the number and field location of guide-stars, the optimised algorithms to beat down angular anisoplanatism and the performance obtained with different temporal controllers under split high-order/low-order tomography or joint tomography. We consider both atmospheric and far greater telescope wind buffeting disturbances. In addition we provide the sky-coverage estimates thus obtained.

Preparation of AO-related observations and post-processing recipes for E-ELT HARMONI-SCAO

Proceedings of SPIE--the International Society for Optical Engineering SPIE, the international society for optics and photonics 9909 (2016) 990978-990978-10

Authors:

Noah Schwartz, Jean-François Sauvage, Carlos Correia, Benoît Neichel, Léonardo Blanco, Thierry Fusco, Arlette Pécontal-Rousset, Aurélien Jarno, Laure Piqueras, Kjetil Dohlen, Kacem El Hadi, Niranjan Thatte, Ian Bryson, Fraser Clarke, Hermine Schnetler

The adaptive optics modes for HARMONI: from Classical to Laser Assisted Tomographic AO

Proceedings of SPIE--the International Society for Optical Engineering SPIE, the international society for optics and photonics 9909 (2016) 990909-990909-15

Authors:

B Neichel, T Fusco, J-F Sauvage, C Correia, K Dohlen, K El-Hadi, L Blanco, N Schwartz, F Clarke, NA Thatte, M Tecza, J Paufique, J Vernet, M Le Louarn, P Hammersley, J-L Gach, S Pascale, P Vola, C Petit, J-M Conan, A Carlotti, C Vérinaud, H Schnetler, I Bryson, T Morris, R Myers, E Hugot, AM Gallie, David M Henry

Echidna Mark II: one giant leap for 'tilting spine' fibre positioning technology

Proceedings of SPIE Society of Photo-optical Instrumentation Engineers 9912 (2016) 991221

Authors:

James M Gilbert, Gavin Dalton, Jon Lawrence

Abstract:

The Australian Astronomical Observatory's 'tilting spine' fibre positioning technology has been redeveloped to provide superior performance in a smaller package. The new design offers demonstrated closed-loop positioning errors of <2.8 μm RMS in only five moves (~10 s excluding metrology overheads) and an improved capacity for open-loop tracking during observations. Tilt-induced throughput losses have been halved by lengthening spines while maintaining excellent accuracy. New low-voltage multilayer piezo actuator technology has reduced a spine's peak drive amplitude from ~150V to <10V, simplifying the control electronics design, reducing the system's overall size, and improving modularity. Every spine is now a truly independent unit with a dedicated drive circuit and no restrictions on the timing or direction of fibre motion.

First results of tests on the WEAVE fibres

Proceedings of SPIE Society of Photo-optical Instrumentation Engineers 9912 (2016)

Authors:

Frédéric Sayède, Youssef Younes, Gilles Fasola, Stéphane Dorent, Don C Abrams, J Alfonso L Aguerri, Piercarlo Bonifacio, Gavin Dalton, Kevin Dee, Phillippe Laporte, Ian Lewis, Emilie Lhome, Kevin Middleton, Johan H Pragt, Juerg Rey, Remko Stuik, Scott C Trager, A Vallenari

Abstract:

WEAVE is a new wide-field spectroscopy facility proposed for the prime focus of the 4.2m William Herschel Telescope. The facility comprises a new 2-degree field of view prime focus corrector with a 1000-multiplex fibre positioner, a small number of individually deployable integral field units, and a large single integral field unit. The IFUs (Integral Field Units) and the MOS (Multi Object Spectrograph) fibres can be used to feed a dual-beam spectrograph that will provide full coverage of the majority of the visible spectrum in a single exposure at a spectral resolution of ~5000 or modest wavelength coverage in both arms at a resolution ~20000. The instrument is expected to be on-sky by the first quarter of 2018 to provide spectroscopic sampling of the fainter end of the Gaia astrometric catalogue, chemical labeling of stars to V~17, and dedicated follow up of substantial numbers of sources from the medium deep LOFAR surveys. After a brief description of the Fibre System, we describe the fibre test bench, its calibration, and some test results. We have to verify 1920 fibres from the MOS bundles and 740 fibres from the mini-IFU bundles with the test bench. In particular, we present the Focal Ratio Degradation of a cable.