MaNGA DynPop. VII. A Unified Bulge–Disk–Halo Model for Explaining Diversity in Circular Velocity Curves of 6000 Spiral and Early-type Galaxies

The Astrophysical Journal Supplement Series American Astronomical Society 280:2 (2025) 55

Authors:

Kai Zhu, Michele Cappellari, Shude Mao, Shengdong Lu, Ran Li, Yong Shi, David A Simon, Youquan Fu, Xiaohan Wang

Abstract:

We derive circular velocity curves (CVCs) from stellar dynamical models for ∼6000 nearby galaxies in the final data release of the Sloan Digital Sky Survey-IV MaNGA survey with integral-field spectroscopy, exploring connections between the inner gravitational potential (traced by CVC amplitude/shape) and galaxy properties. The maximum circular velocity ( Vcircmax ) and circular velocity at the half-light radius ( Vcirc(Remaj) ) both scale linearly with the stellar second velocity moment σe2≡〈V2+σ2〉 within the half-light isophote, following Vcircmax≈1.72σe (7% error) and Vcirc(Remaj)≈1.62σe (7% error). CVC shapes (rising, flat, declining) correlate strongly with structural and stellar population properties: declining curves dominate in massive, early-type, bulge-dominated galaxies with old, metal-rich stars and early quenching, while rising CVCs prevail in disk-dominated systems with younger stellar populations and ongoing star formation. Using a unified bulge–disk–halo model, we predict CVC shapes with minimal bias, identifying three governing parameters: bulge-to-total mass ratio (B/T), dark matter fraction within Re, and bulge Sérsic index. The distribution of CVC shapes across the mass–size plane reflects evolutionary pathways driven by (i) in situ star formation (spurring bulge growth) and (ii) dry mergers. This establishes CVC morphology as a diagnostic for galaxy evolution, linking dynamical signatures to structural and stellar population histories.

An accurate measurement of the spectral resolution of the JWST Near Infrared Spectrograph

(2025)

Authors:

Anowar J Shajib, Tommaso Treu, Alejandra Melo, Guido Roberts-Borsani, Shawn Knabel, Michele Cappellari, Joshua A Frieman

Assessing Robustness and Bias in 1D Retrievals of 3D Global Circulation Models at High Spectral Resolution: A WASP-76 b Simulation Case Study in Emission

The Astrophysical Journal American Astronomical Society 990:2 (2025) 106

Authors:

Lennart van Sluijs, Hayley Beltz, Isaac Malsky, Genevieve H Pereira, L Cinque, Emily Rauscher, Jayne Birkby

Abstract:

High-resolution spectroscopy (HRS) of exoplanet atmospheres has successfully detected many chemical species and is quickly moving toward detailed characterization of the chemical abundances and dynamics. HRS is highly sensitive to the line shape and position; thus, it can detect three-dimensional (3D) effects such as winds, rotation, and spatial variation of atmospheric conditions. At the same time, retrieval frameworks are increasingly deployed to constrain chemical abundances, pressure–temperature (P–T) structures, orbital parameters, and rotational broadening. To explore the multidimensional parameter space, we need computationally fast models, which are consequently mostly one-dimensional (1D). However, this approach risks introducing interpretation bias since the planet’s true nature is 3D. We investigate the robustness of this methodology at high spectral resolution by running 1D retrievals on simulated observations in emission within an observational framework using 3D global circulation models of the quintessential HJ WASP-76 b. We find that the retrieval broadly recovers conditions present in the atmosphere, but that the retrieved P–T and chemical profiles are not a homogeneous average of all spatial and phase-dependent information. Instead, they are most sensitive to spatial regions with large thermal gradients, which do not necessarily coincide with the strongest emitting regions. Our results further suggest that the choice of parameterization for the P–T and chemical profiles, as well as Doppler offsets among opacity sources, impact the retrieval results. These factors should be carefully considered in future retrieval analyses.

GPU-Accelerated Gravitational Lensing and Dynamical (GLaD) modeling for cosmology and galaxies

Astronomy & Astrophysics EDP Sciences 701 (2025) A280-A280

Authors:

Han Wang, Sherry H Suyu, Aymeric Galan, Aleksi Halkola, Michele Cappellari, Anowar J Shajib, Miha Cernetic

Abstract:

Time-delay distance measurements from strongly lensed quasars provide a robust and independent method for determining the Hubble constant (H0). This approach offers a crucial cross-check against H0 measurements obtained from the standard distance ladder in the late Universe and the cosmic microwave background in the early Universe. The mass-sheet degeneracy in strong-lensing models may introduce a significant systematic uncertainty, however, that limits the precision of H0 estimates. Dynamical modeling complements strong lensing very well to break the mass-sheet degeneracy because both methods model the mass distribution of galaxies, but rely on different sets of observational constraints. We developed a method and software framework for an efficient joint modeling of stellar kinematic and lensing data. Using simulated lensing and kinematic data of the lensed quasar system RXJ1131−1131 as a test case, we demonstrate that a precision of approximately 4% on H0 can be achieved with high-quality data that have a high signal-to-noise ratio. Through extensive modeling, we examined the impact of a supermassive black hole in the lens galaxy and potential systematic biases in kinematic data on the H0 measurements. Our results demonstrate that either using a prior range for the black hole mass and orbital anisotropy, as motivated by studies of nearby galaxies, or excluding the central bins in the kinematic data can effectively mitigate potential biases on H0 induced by the black hole. By testing the model on mock kinematic data with values that were systematically biased, we emphasize that it is important to use kinematic data with systematic errors below the subpercent level, which can currently be achieved. Additionally, we leveraged GPU parallelization to accelerate the Bayesian inference. This reduced a previously month-long process by an order of magnitude. This pipeline offers significant potential for advancing cosmological and galaxy evolution studies with large datasets.

Spatially Resolved Kinematics of SLACS Lens Galaxies. I. Data and Kinematic Classification

The Astrophysical Journal American Astronomical Society 990:1 (2025) 51

Authors:

Shawn Knabel, Tommaso Treu, Michele Cappellari, Anowar J Shajib, Chih-Fan Chen, Simon Birrer, Vardha N Bennert

Abstract:

We obtain spatially resolved kinematics with the Keck Cosmic Web Imager (KCWI) integral-field spectrograph for a sample of 14 massive ( 11