The PAH 3.4 micron feature as a tracer of shielding in the Orion Bar and NGC 6240

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf2047

Authors:

N Thatte, D Rigopoulou, Fr Donnan, I Garcia-Bernete, M Pereira-Santaella, B Draine, O Veenema, B Kerkeni, A Alonso-Herrero, L Hermosa Muñoz, G Speranza

Abstract:

<jats:title>Abstract</jats:title> <jats:p>We have carried out a detailed analysis of the 3.4 μm spectral feature arising from Polycyclic Aromatic Hydrocarbons (PAH), using JWST archival data. For the first time in an external galaxy (NGC 6240), we have identified two distinct spectral components of the PAH 3.4 μm feature: a shorter wavelength component at 3.395 μm, which we attribute to short aliphatic chains tightly attached to the aromatic rings of the PAH molecules; and a longer wavelength feature at 3.405 μm that arises from longer, more fragile, aliphatic chains that are weakly attached to the parent PAH molecule. These longer chains are more easily destroyed by far-ultraviolet photons (&amp;gt;5eV) and PAH thermal emission only occurs where PAH molecules are shielded from more energetic photons by dense molecular gas. We see a very strong correlation in the morphology of the PAH 3.395 μm feature with the PAH 3.3 μm emission, the latter arising from robust aromatic PAH molecules. We also see an equally strong correlation between the PAH 3.405 μm morphology and the warm molecular gas, as traced by H2 vibrational lines. We show that the flux ratio PAH 3.395/PAH 3.405 &amp;lt; 0.3 corresponds strongly to regions where the PAH molecules are shielded by dense molecular gas, so that only modestly energetic UV photons penetrate to excite the PAHs. Our work shows that PAH 3.405 μm and PAH 3.395 μm emission features can provide robust diagnostics of the physical conditions of the interstellar medium in external galaxies, and can be used to quantify the energies of the photon field penetrating molecular clouds.</jats:p>

Shock-driven heating in the circumnuclear star-forming regions of NGC 7582: Insights from JWST NIRSpec and MIRI/MRS spectroscopy

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1887

Authors:

Oscar Veenema, Niranjan Thatte, Dimitra Rigopoulou, Ismael García-Bernete, Almudena Alonso-Herrero, Anelise Audibert, Enrica Bellocchi, Andrew J Bunker, Steph Campbell, Francoise Combes, Ric I Davies, Daniel Delaney, Fergus Donnan, Federico Esposito, Santiago García-Burillo, Omaira Gonzalez Martin, Laura Hermosa Muñoz, Erin KS Hicks, Sebastian F Hoenig, Nancy A Levenson, Chris Packham, Miguel Pereira-Santaella, Cristina Ramos Almeida, Claudio Ricci, Rogemar A Riffel, David Rosario, Lulu Zhang

Abstract:

Abstract We present combined JWST NIRSpec and MIRI/MRS integral field spectroscopy data of the nuclear and circumnuclear regions of the highly dust obscured Seyfert 2 galaxy NGC 7582, which is part of the sample of AGN in the Galaxy Activity, Torus and Outflow Survey (GATOS). Spatially resolved analysis of the pure rotational H2 lines (S(1)-S(7)) reveals a characteristic power-law temperature distribution in different apertures, with the two prominent southern star-forming regions exhibiting unexpectedly high molecular gas temperatures, comparable to those in the AGN powered nuclear region. We investigate potential heating mechanisms including direct AGN photoionisation, UV fluorescent excitation from young star clusters, and shock excitation. We find that shock heating gives the most plausible explanation, consistent with multiple near- and mid-IR tracers and diagnostics. Using photoionisation models from the PhotoDissociation Region Toolbox, we quantify the ISM conditions in the different regions, determining that the southern star-forming regions have a high density (nH ∼ 105 cm−3) and are irradiated by a moderate UV radiation field (G0 ∼ 103 Habing). Fitting a suite of Paris-Durham shock models to the rotational H2 lines, as well as rovibrational 1-0 S(1), 1-0 S(2), and 2-1 S(1) H2 emission lines, we find that a slow (vs ∼ 10 km/s) C-type shock is likely responsible for the elevated temperatures. Our analysis loosely favours local starburst activity as the driver of the shocks and circumnuclear gas dynamics in NGC 7582, though the possibility of an AGN jet contribution cannot be excluded.

PowerBin: Fast Adaptive Data Binning with Centroidal Power Diagrams

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1726

Abstract:

Abstract Adaptive binning is a crucial step in the analysis of large astronomical datasets, such as those from integral-field spectroscopy, to ensure a sufficient signal-to-noise ratio ($\mathcal {S/N}$) for reliable model fitting. However, the widely-used Voronoi-binning method and its variants suffer from two key limitations: they scale poorly with data size, often as $\mathcal {O}(N^2)$, creating a computational bottleneck for modern surveys, and they can produce undesirable non-convex or disconnected bins. I introduce PowerBin, a new algorithm that overcomes these issues. I frame the binning problem within the theory of optimal transport, for which the solution is a Centroidal Power Diagram (CPD), guaranteeing convex bins. Instead of formal CPD solvers, which are unstable with real data, I develop a fast and robust heuristic based on a physical analogy of packed soap bubbles. This method reliably enforces capacity constraints even for non-additive measures like $\mathcal {S/N}$ with correlated noise. I also present a new bin-accretion algorithm with $\mathcal {O}(N\log N)$ complexity, removing the previous bottleneck. The combined PowerBin algorithm scales as $\mathcal {O}(N\log N)$, making it about two orders of magnitude faster than previous methods on million-pixel datasets. I demonstrate its performance on a range of simulated and real data, showing it produces high-quality, convex tessellations with excellent $\mathcal {S/N}$ uniformity. The public Python implementation provides a fast, robust, and scalable tool for the analysis of modern astronomical data.

High-Order Stellar Kinematic in MaNGA integral-field spectroscopy survey: classification, stellar population, and the impact of galaxy bars and mergers

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1760

Authors:

Youquan Fu, Michele Cappellari, Kai Zhu, Shude Mao, Shengdong Lu

Abstract:

Abstract We extract with ppxf and analyse the high-order stellar kinematic moments h3 (related to skewness) and h4 (related to kurtosis) in a complete subsample of 2230 galaxies with well-sampled line-of-sight velocity distributions (σe ≳ 140 km/s) from the final data release of 10010 unique galaxies of the MaNGA survey. To reduce template mismatch, we created a stellar library based on MaStar. We used proxies for the specific angular momentum parameter ($\lambda _{R_\mathrm{e}}$) and ellipticity (ϵ) to distinguish between fast and slow rotators. Using the Pearson correlation coefficient between spatially resolved h3 and V/σ within the isophotes of 2.5 half-light radii (Re), we classified 1,599 fast rotators into: (i) 1,073 galaxies showing a strong h3 versus V/σ anti-correlation, indicative of normal rotating stellar disks as observed in earlier studies. (ii) 526 galaxies exhibiting weak or no correlation between h3 and V/σ. These galaxies are likely disturbed, showing signs of bars or merging. Further inspection revealed that 85 galaxies from the latter group contain an anti-correlated inner disk, with half of these inner disks composed of younger stellar populations, indicative of recent gas accretion and nuclear star formation. This catalogue presents measurements of high-order stellar kinematic moments, providing a basis for exploring their potential links with the kinematic structures of galaxies. We have made the newly extracted high-order kinematics publicly available for further studies on stellar dynamics and galaxy formation.

An accurate measurement of the spectral resolution of the JWST Near Infrared Spectrograph

Astronomy & Astrophysics EDP Sciences 702 (2025) L12-L12

Authors:

Anowar J Shajib, Tommaso Treu, Alejandra Melo, Guido Roberts-Borsani, Shawn Knabel, Michele Cappellari, Joshua A Frieman

Abstract:

The spectral resolution (R ≡ λλ) of spectroscopic data is crucial information for accurate kinematic measurements. In this letter we present a robust measurement of the spectral resolution of the JWST Near Infrared Spectrograph (NIRSpec) in fixed slit (FS) and integral field spectroscopy (IFS) modes. Due to the similarity of the utilized slit dimension in the FS mode to that of the shutters in the multi-object spectroscopy (MOS) mode, our resolution measurements in the FS mode can also be used for the MOS mode in principle. We modeled H and He lines of the planetary nebula SMP LMC 58 using a Gaussian line spread function (LSF) to estimate the wavelength-dependent resolution for multiple disperser and filter combinations. We corrected for the intrinsic width of the planetary nebula’s H and He lines due to its expansion velocity by measuring it from a higher-resolution X-shooter spectrum. We find that NIRSpec’s in-flight spectral resolutions exceed the pre-launch estimates provided in the JWST User Documentation by 11–53% in the FS mode and by 1–24% in the IFS mode across the covered wavelengths. We recover the expected trend that the resolution increases with the wavelength within a configuration. The robust and accurate LSFs presented in this letter will enable high-accuracy kinematic measurements using NIRSpec for applications in cosmology and galaxy evolution.