A novel design of a fibre-fed high resolution spectrograph for WFMOS
      Proceedings of SPIE - The International Society for Optical Engineering  7014 (2008)
    
        
    
        Abstract:
We present a novel design of a fibre-fed high-resolution spectrograph (HRS hereafter) for WFMOS. WFMOS HRS is a multi-object spectrograph for studying the formation and evolution history of our Galaxy by measuring spectra of Galactic stars. In a 8m-class telescope, it aims to measure 1,500 stellar spectra simultaneously with spectral resolution between 25,000 and 40,000 in optical wavebands de.ned within 4000Å and 9000Å. For the HRS optical design, we have explored three disperser options : Volume Phase Holographic Grating (VPHGs), prism-immersed VPHG, and Echelle grating. Two camera designs have also been studied for the spectrograph camera optics, one tranmissive design and the other a Schmidt design. We also investigated a conjugate collimator design that allows two spectrographs to share a single grating so as to work as a single spectrograph.Development of non-hybridised HgCdTe detectors for the next generation of astronomical instrumentation
      Proceedings of SPIE - The International Society for Optical Engineering  7021 (2008)
    
        
    
        Abstract:
The superb image quality that is predicted, and even demanded, for the next generation of Extremely Large Telescopes (ELT) presents a potential crisis in terms of the sheer number of detectors that may be required. Developments in infrared technology have progressed dramatically in recent years, but a substantial reduction in the cost per pixel of these IR arrays will be necessary to permit full exploitation of the capabilities of these telescopes. Here we present an outline and progress report of an initiative to develop a new generation of astronomical grade Cadmium Mercury Telluride (HgCdTe) array detectors using a novel technique which enables direct growth of the sensor diodes onto the Read Out Integrated Circuit large monolithic arrays. We present preliminary growth and design simulation results for devices based on this technique, and discuss the prospects for deployment of this technology in the era of extremely large telescopes.Discovery of hot gas in outflow in NGC 3379
      Astrophysical Journal  688:2 (2008) 1000-1008
    
        
    
        Abstract:
We report the discovery of a faint (Lx ∼ 4 ± 1.5 × 1037 ergs s-1, 0.5-2 keV), outflowing gaseous hot interstellar medium (ISM) in NGC 3379. This represents the lowest X-ray luminosity ever measured from a hot phase of the ISM in a nearby early-type galaxy. The discovery of the hot ISM in a very deep Chandra observation was possible thanks to its unique spectral and spatial signatures, which distinguish it from the integrated stellar X-ray emission, responsible for most of the unresolved emission in the Chandra data. This hot component is found in a region of ∼800 pc in radius at the center of the galaxy and has a total mass M ∼ 3 ± 1 × 105 M⊙. Independent theoretical prediction of the characteristics of an ISM in this galaxy, based on the intrinsic properties of NGC 3379, reproduce well the observed luminosity, temperature, and radial distribution and mass of the hot gas, and indicate that the gas is in an outflowing phase, predicted by models but not observed in any system so far.EPICS, the exoplanet imager for the E-ELT
      Proceedings of SPIE - The International Society for Optical Engineering  7015 (2008)
    
        
    
        Abstract:
Presently, dedicated instrument developments at large telescopes (SPHERE for the VLT, GPI for Gemini) are about to discover and explore self-luminous giant planets by direct imaging and spectroscopy. The next generation of 30m-40m ground-based telescopes, the Extremely Large Telescopes (ELTs), have the potential to dramatically enlarge the discovery space towards older giant planets seen in reflected light and ultimately even a small number of rocky planets. EPICS is a proposed instrument for the European ELT, dedicated to the detection and characterization of expolanets by direct imaging and spectroscopy. ESO recently launched a phase-A study for EPICS with a large European consortium which - by simulations and demonstration experiments - will investigate state-of-the-art diffraction and speckle suppression techniques to deliver highest contrasts. The final result of the study in 2010 will be a conceptual design and a development plan for the instrument. Here we present first results from the phase-A study and discuss the main challenges and science capabilities of EPICS.Exploring high contrast limitations for image slicer based integral field spectrographs
      Proceedings of SPIE - The International Society for Optical Engineering  7015 (2008)