The 2dF Galaxy Redshift Survey: the environmental dependence of galaxy star formation rates near clusters
Monthly Notices of the Royal Astronomical Society 334 (2002) 673-683
Kinematics of Galaxies in the Hubble Deep Field South: Discovery of a Very Massive Spiral at z=0.6
ArXiv astro-ph/0207457 (2002)
Abstract:
We report the first results from a study of the internal kinematics, based on spatially resolved H_alpha velocity profiles, of three galaxies at redshift z~0.6 and one at redshift z~0.8, detected by ISOCAM in the Hubble Deep Field South. The kinematics are derived from high resolution near-infrared VLT spectroscopy. One of the galaxies is a massive spiral which possesses a very large rotational velocity of 460 km/s and contains a mass of 10^12 M_solar (within 20 kpc), significantly higher than the dynamical masses measured in most other local and high redshift spirals. Two of the galaxies comprise a counter-rotating interacting system, while the fourth is also a large spiral. The observed galaxies are representative examples of the morphologies encountered among ISOCAM galaxies. The mass-to-light (M /L_bol) ratios of ISOCAM galaxies lie between those of local luminous IR galaxies and massive spirals. We measure an offset of 1.6+/-0.3 mag in the rest frame B-band and of 0.7+/-0.3 mag in the rest frame I-band when we compare the four ISOCAM galaxies to the local Tully-Fisher B and I-band relations. We conclude that the large IR luminosity of the ISOCAM population results from a combination of large mass and efficient triggering of star formation. Since ISOCAM galaxies contribute significantly to the Cosmic Infrared Background our results imply that a relatively small number of very massive and IR luminous objects contribute significantly to the IR background and star formation activity near z~0.7.Ultr-Luminous Infrared Galaxies: QSOs in Formation?
ArXiv astro-ph/0207405 (2002)
Abstract:
We present new near-infrared Keck and VLT spectroscopic data on the stellar dynamics in late stage, ultra-luminous infrared galaxy (ULIRG) mergers . We now have information on the structural and kinematic properties of 18 ULIRGs, 8 of which contain QSO-like active galactic nuclei. The host properties (velocity dispersion, effective radius, effective surface brightness, M_K) of AGN-dominated and star formation dominated ULIRGs are similar. ULIRGs fall remarkably close to the fundamental plane of early type galaxies. They populate a wide range of the plane, are on average similar to L*-rotating ellipticals, but are well offset from giant ellipticals and optically/UV bright, low-z QSOs/radio galaxies. ULIRGs and local QSOs/radio galaxies are very similar in their distributions of bolometric and extinction corrected near-IR luminosities, but ULIRGs have smaller effective radii and velocity dispersions than the local QSO/radio galaxy population. Hence, their host masses and inferred black hole masses are correspondingly smaller. The latter are more akin to those of local Seyfert galaxies. ULIRGs thus resemble local QSOs in their near-IR and bolometric luminosities because they are (much more) efficiently forming stars and/or feeding their black holes, and not because they have QSO-like, very massive black holes. We conclude that ULIRGs as a class cannot evolve into optically bright QSOs. They will more likely become quiescent, moderate mass field ellipticals or, when active, might resemble the X-ray bright, early type galaxies that have recently been found by the Chandra Observatory.The 2dF Galaxy Redshift Survey: The amplitudes of fluctuations in the 2dFGRS and the CMB, and implications for galaxy biasing
Monthly Notices of the Royal Astronomical Society 333:4 (2002) 961-968