WISDOM project – XIV. SMBH mass in the early-type galaxies NGC 0612, NGC 1574, and NGC 4261 from CO dynamical modelling

Monthly Notices of the Royal Astronomical Society Oxford University Press 522:4 (2023) 6170-6195

Authors:

Ilaria Ruffa, Timothy A Davis, Michele Cappellari, Martin Bureau, Jacob Elford, Satoru Iguchi, Federico Lelli, Fu-Heng Liang, Lijie Liu, Anan Lu, Marc Sarzi, Thomas G Williams

Abstract:

We present a CO dynamical estimate of the mass of the super-massive black hole (SMBH) in three nearby early-type galaxies: NGC 0612, NGC 1574 and NGC 4261. Our analysis is based on Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 3-6 observations of the 12CO(2-1) emission line with spatial resolutions of 14 − 58 pc (0.01″ − 0.26″). We detect disc-like CO distributions on scales from ≲ 200 pc (NGC 1574 and NGC 4261) to ≈10 kpc (NGC 0612). In NGC 0612 and NGC 1574 the bulk of the gas is regularly rotating. The data also provide evidence for the presence of a massive dark object at the centre of NGC 1574, allowing us to obtain the first measure of its mass, MBH = (1.0 ± 0.2) × 108 M⊙ (1σ uncertainty). In NGC 4261, the CO kinematics is clearly dominated by the SMBH gravitational influence, allowing us to determine an accurate black hole mass of (1.62 ± 0.04) × 109 M⊙ (1σ uncertainty). This is fully consistent with a previous CO dynamical estimate obtained using a different modelling technique. Signs of non-circular gas motions (likely outflow) are also identified in the inner regions of NGC 4261. In NGC 0612, we are only able to obtain a (conservative) upper limit of MBH ≲ 3.2 × 109 M⊙. This has likely to be ascribed to the presence of a central CO hole (with a radius much larger than that of the SMBH sphere of influence), combined with the inability of obtaining a robust prediction for the CO velocity curve. The three SMBH mass estimates are overall in agreement with predictions from the MBH − σ* relation.

First light and reionization epoch simulations (FLARES) XI: [O iii] emitting galaxies at 5 < z < 10

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 522:3 (2023) 4014-4027

Authors:

Stephen M Wilkins, Christopher C Lovell, Aswin P Vijayan, Dimitrios Irodotou, Nathan J Adams, William J Roper, Joseph Caruana, Jorryt Matthee, Louise TC Seeyave, Christopher J Conselice, Pablo G Pérez-González, Jack C Turner, James MS Donnellan, Aprajita Verma, JAA Trussler

MaNGA DynPop – I. Quality-assessed stellar dynamical modelling from integral-field spectroscopy of 10K nearby galaxies: a catalogue of masses, mass-to-light ratios, density profiles, and dark matter

Monthly Notices of the Royal Astronomical Society Oxford University Press 522:4 (2023) 6326-6353

Authors:

Kai Zhu, Shengdong Lu, Michele Cappellari, Ran Li, Shude Mao, Liang Gao

Abstract:

This is the first paper in our series on the combined analysis of the Dynamics and stellar Population (DynPop) for the MaNGA survey in the final SDSS Data Release 17 (DR17). Here, we present a catalogue of dynamically determined quantities for over 10 000 nearby galaxies based on integral-field stellar kinematics from the MaNGA survey. The dynamical properties are extracted using the axisymmetric Jeans Anisotropic Modelling (JAM) method, which was previously shown to be the most accurate for this kind of study. We assess systematic uncertainties using eight dynamical models with different assumptions. We use two orientations of the velocity ellipsoid: either cylindrically aligned JAMcyl or spherically aligned JAMsph. We also make four assumptions for the models’ dark versus luminous matter distributions: (1) mass-follows-light, (2) free NFW dark halo, (3) cosmologically constrained NFW halo, (4) generalized NFW dark halo, i.e. with free inner slope. In this catalogue, we provide the quantities related to the mass distributions (e.g. the density slopes and enclosed mass within a sphere of a given radius for total mass, stellar mass, and dark matter mass components). We also provide the complete models which can be used to compute the full luminous and mass distribution of each galaxy. Additionally, we visually assess the qualities of the models to help with model selections. We estimate the observed scatter in the measured quantities which decreases as expected with improvements in quality. For the best data quality, we find a remarkable consistency of measured quantities between different models, highlighting the robustness of the results.

Applying a temporal systematics model to vector Apodizing Phase Plate coronagraphic data: TRAP4vAPP

(2023)

Authors:

Pengyu Liu, Alexander J Bohn, David S Doelman, Ben J Sutlieff, Matthias Samland, Matthew A Kenworthy, Frans Snik, Jayne L Birkby, Beth A Biller, Jared R Males, Katie M Morzinski, Laird M Close, Gilles PPL Otten

MaNGA integral-field stellar kinematics of LoTSS radio galaxies: Luminous radio galaxies tend to be slow rotators

Astronomy and Astrophysics EDP Sciences 673 (2023) A12

Authors:

X Zheng, H Röttgering, A Van Der Wel, M Cappellari

Abstract:

The radio jets of an active galactic nucleus (AGN) can heat up the gas around a host galaxy and quench star formation activity. The presence of a radio jet could be related to the evolutionary path of the host galaxy and may be imprinted in the morphology and kinematics of the galaxy. In this work, we use data from the Sloan Digital Sky Survey’s Mapping Nearby Galaxies at Apache Point Observatory survey and the Low Frequency Array (LOFAR) Two-Metre Sky Survey as well as the National Radio Astronomy Observatory (NRAO) the Karl G. Jansky Very Large Array (VLA) Sky Survey and the Faint Images of the Radio Sky at Twenty Centimeter survey. We combine these integral field spectroscopic data and radio data to study the link between stellar kinematics and radio AGNs. We find that the luminosity-weighted stellar angular momentum λRe is tightly related to the range of radio luminosity and the fraction of radio AGNs Fradio present in galaxies, as high-luminosity radio AGNs are only in galaxies with a small λRe, and the Fradio at a fixed stellar mass decreases with λRe. These results indicate that galaxies with stronger random stellar motions with respect to the ordered motions might be better breeding grounds for powerful radio AGNs. This would also imply that the merger events of galaxies are important in the triggering of powerful radio jets in our sample.