Optical integral field spectroscopy of intermediate redshift infrared bright galaxies
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP)
Abstract:
The extreme infrared (IR) luminosity of local luminous and ultra-luminous IR galaxies (U/LIRGs; 11 < log LIR /Lsun < 12 and log LIR /Lsun > 12, respectively) is mainly powered by star-formation processes triggered by mergers or interactions. While U/LIRGs are rare locally, at z > 1, they become more common, they dominate the star-formation rate (SFR) density, and a fraction of them are found to be normal disk galaxies. Therefore, there must be an evolution of the mechanism triggering these intense starbursts with redshift. To investigate this evolution, we present new optical SWIFT integral field spectroscopic H{\alpha}+[NII] observations of a sample of 9 intermediate-z (0.2 < z < 0.4) U/LIRG systems selected from Herschel 250{\mu}m observations. The main results are the following: (a) the ratios between the velocity dispersion and the rotation curve amplitude indicate that 10-25% (1-2 out of 8) might be compatible with being isolated disks while the remaining objects are interacting/merging systems; (b) the ratio between un-obscured and obscured SFR traced by H{\alpha} and LIR, respectively, is similar in both local and these intermediate-z U/LIRGs; and (c) the ratio between 250{\mu}m and the total IR luminosities of these intermediate-z U/LIRGs is higher than that of local U/LIRGs with the same LIR . This indicates a reduced dust temperature in these intermediate-z U/LIRGs. This, together with their already measured enhanced molecular gas content, suggests that the interstellar medium conditions are different in our sample of intermediate-z galaxies when compared to local U/LIRGs.Practical implementation of the complex wavefront modulation model for optical alignment
Proceedings of SPIE - The International Society for Optical Engineering 6617 21-21
Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI). VI. Crowdsourced lens finding with Space Warps
Abstract:
Strong lenses are extremely useful probes of the distribution of matter on galaxy and cluster scales at cosmological distances, but are rare and difficult to find. The number of currently known lenses is on the order of 1,000. We wish to use crowdsourcing to carry out a lens search targeting massive galaxies selected from over 442 square degrees of photometric data from the Hyper Suprime-Cam (HSC) survey. We selected a sample of $\sim300,000$ galaxies with photometric redshifts in the range $0.2 < z_{phot} < 1.2$ and photometrically inferred stellar masses $\log{M_*} > 11.2$. We crowdsourced lens finding on this sample of galaxies on the Zooniverse platform, as part of the Space Warps project. The sample was complemented by a large set of simulated lenses and visually selected non-lenses, for training purposes. Nearly 6,000 citizen volunteers participated in the experiment. In parallel, we used YattaLens, an automated lens finding algorithm, to look for lenses in the same sample of galaxies. Based on a statistical analysis of classification data from the volunteers, we selected a sample of the most promising $\sim1,500$ candidates which we then visually inspected: half of them turned out to be possible (grade C) lenses or better. Including lenses found by YattaLens or serendipitously noticed in the discussion section of the Space Warps website, we were able to find 14 definite lenses, 129 probable lenses and 581 possible lenses. YattaLens found half the number of lenses discovered via crowdsourcing. Crowdsourcing is able to produce samples of lens candidates with high completeness and purity, compared to currently available automated algorithms. A hybrid approach, in which the visual inspection of samples of lens candidates pre-selected by discovery algorithms and/or coupled to machine learning is crowdsourced, will be a viable option for lens finding in the 2020s.Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI). VI. Crowdsourced lens finding with Space Warps
Abstract:
Strong lenses are extremely useful probes of the distribution of matter on galaxy and cluster scales at cosmological distances, but are rare and difficult to find. The number of currently known lenses is on the order of 1,000. We wish to use crowdsourcing to carry out a lens search targeting massive galaxies selected from over 442 square degrees of photometric data from the Hyper Suprime-Cam (HSC) survey. We selected a sample of $\sim300,000$ galaxies with photometric redshifts in the range $0.2 < z_{phot} < 1.2$ and photometrically inferred stellar masses $\log{M_*} > 11.2$. We crowdsourced lens finding on this sample of galaxies on the Zooniverse platform, as part of the Space Warps project. The sample was complemented by a large set of simulated lenses and visually selected non-lenses, for training purposes. Nearly 6,000 citizen volunteers participated in the experiment. In parallel, we used YattaLens, an automated lens finding algorithm, to look for lenses in the same sample of galaxies. Based on a statistical analysis of classification data from the volunteers, we selected a sample of the most promising $\sim1,500$ candidates which we then visually inspected: half of them turned out to be possible (grade C) lenses or better. Including lenses found by YattaLens or serendipitously noticed in the discussion section of the Space Warps website, we were able to find 14 definite lenses, 129 probable lenses and 581 possible lenses. YattaLens found half the number of lenses discovered via crowdsourcing. Crowdsourcing is able to produce samples of lens candidates with high completeness and purity, compared to currently available automated algorithms. A hybrid approach, in which the visual inspection of samples of lens candidates pre-selected by discovery algorithms and/or coupled to machine learning is crowdsourced, will be a viable option for lens finding in the 2020s.The UKFMOS Spectrograph
Proceedings of SPIE - The International Society for Optical Engineering 6269:Parts 1-3 136-136