Stellar populations and star formation histories of the nuclear star clusters in six nearby galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 480:2 (2018) 1973-1998

Authors:

N Kacharov, N Neumayer, AC Seth, Michele Cappellari, R McDermid, CJ Walcher, T Böker

Abstract:

The majority of spiral and elliptical galaxies in the Universe host very dense and compact stellar systems at their centres known as nuclear star clusters (NSCs). In this work we study the stellar populations and star formation histories (SFH) of the NSCs of six nearby galaxies with stellar masses ranging between 2 and 8×109M⊙ (four late-type spirals and two early-types) with high resolution spectroscopy. Our observations are taken with the X-Shooter spectrograph at the VLT. We make use of an empirical simple stellar population (SSP) model grid to fit composite stellar populations to the data and recover the SFHs of the nuclei. We find that the nuclei of all late-type galaxies experienced a prolonged SFH, while the NSCs of the two early-types are consistent with SSPs. The NSCs in the late-type galaxies sample appear to have formed a significant fraction of their stellar mass already more than 10 Gyr ago, while the NSCs in the two early-type galaxies are surprisingly younger. Stars younger than 100 Myr are present in at least two nuclei: NGC 247 & NGC 7793, with some evidence for young star formation in NGC 300’s NSC. The NSCs of the spirals NGC 247 and NGC 300 are consistent with prolonged in situ star formation with a gradual metallicity enrichment from ∼−1.5 dex more than 10 Gyr ago, reaching super-Solar values few hundred Myr ago. NGC 3621 appears to be very metal rich already in the early Universe and NGC 7793 presents us with a very complex SFH, likely dominated by merging of various massive star clusters coming from different environments.

Construction progress of WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope

Proceedings Volume 10702, Ground-based and Airborne Instrumentation for Astronomy VII Society of Photo-optical Instrumentation Engineers 10702 (2018)

Authors:

Gavin Dalton, S Trager, DC Abrams, Ian Lewis, Matthew Brock, Ellen Schallig, Et al.

Abstract:

We present an update on the overall construction progress of the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT), now that all the major fabrication contracts are in place. We also present a summary of the current planning behind the 5-year initial phase of survey operations, and some detailed end-to-end science simulations that have been effected to evaluate the final on-sky performance after data processing. WEAVE will provide optical ground-based follow up of ground-based (LOFAR) and space-based (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2-degree prime focus field of view at the WHT, with a buffered pick-and-place positioner system hosting 1000 multi-object (MOS) fibres, 20 integral field units, or a single large IFU for each observation. The fibres are fed to a single (dual-beam) spectrograph, with total of 16k spectral pixels, located within the WHT GHRIL enclosure on the telescope Nasmyth platform, supporting observations at R~5000 over the full 370-1000nm wavelength range in a single exposure, or a high resolution mode with limited coverage in each arm at R~20000. The project has experienced some delays in procurement and now has first light expected for the middle of 2019.

SDSS-IV MaNGA: The intrinsic shape of slow rotator early-type galaxies

(2018)

Authors:

Hongyu Li, Shude Mao, Michele Cappellari, Mark T Graham, Eric Emsellem, RJ Long

Stellar populations and star formation histories of the nuclear star clusters in six nearby galaxies

(2018)

Authors:

Nikolay Kacharov, Nadine Neumayer, Anil C Seth, Michele Cappellari, Richard McDermid, C Jakob Walcher, Torsten Böker

Opto-mechanical designs for the HARMONI adaptive optics systems

Proceedings of SPIE SPIE 10703 (2018)

Authors:

K Dohlen, TJ Morris, J Piqueras Lopez, A Calcines-Rosario, A Costille, M Dubbeldam, K El Hadi, T Fusco, M Llored, B Neichel, S Pascal, J-F Sauvage, P Vola, Fraser Clarke, H Schnetler, I Bryson, Niranjan Thatte

Abstract:

HARMONI is a visible and near-infrared integral field spectrograph equipped with two complementary adaptive optics systems, fully integrated within the instrument. A Single Conjugate AO (SCAO) system offers high performance for a limited sky coverage and a Laser Tomographic AO (LTAO) system provides AO correction with a very high sky-coverage. While the deformable mirror performing real-time correction of the atmospheric disturbances is located within the telescope itself, the instrument contains a suite of state-of-the-art and innovative wavefront sensor systems. Laser guide star sensors (LGSS) are located at the entrance of the instrument and fed by a dichroic beam splitter, while the various natural guide star sensors for LTAO and SCAO are located close to the science focal plane. We present opto-mechanical architecture and design at PDR level for these wavefront sensor systems.