Numerical Aperture Dependence of Mie Modes in Low Refractive Index Particles and Enhanced Collection Using Metallic Substrates
Advanced Optical Materials Wiley (2025)
Abstract:
Abstract Advancements in utilizing low refractive index dielectric particles have implications for sensing, lasing, and strong‐coupling at nano and microscopic scales. These cavities offer benefits like ease of fabrication and biocompatibility, making them promising for a wide range of technologies by utilizing their narrow linewidth modes. However, optical modes sustained in these dispersive systems can show distinct behaviors depending on the detection configuration. This study shows the influence of numerical aperture (NA) of the objective lens on the detection of Mie modes in a dielectric microsphere under far‐field excitation and collection. It is demonstrated experimentally and numerically that Mie modes from microspheres outcouple at different angles, with variations in mode amplitudes contingent on the NA of the objective lens, thus leading to distinct linewidths while probing with different NA objectives. Furthermore, it is shown that metallic substrates can facilitate efficient detection of Mie modes by redirecting scattered modes towards low angles. This enables mode detection with low NA lenses and further preventing the inclusion of incident scattered light from higher angles which otherwise perturb the modes. The results underline the importance of careful detection strategies to fully harness dielectric particles as optical platforms for applications in particle detection and characterization.Interference in Complex Canonical Variables Is Not Quantum
Quantum Reports MDPI 7:3 (2025) 40
Abstract:
We formally represent the quantum interference of a single qubit embodied by a photon in the Mach–Zehnder interferometer using the classical Hamiltonian framework but with complex canonical variables. Although all operations on a single qubit can be formally expressed using complex classical Hamiltonian dynamics, we show that the resulting system is still not a proper qubit. The reason for this is that it is not capable of getting entangled to another bona fide qubit and hence it does not have the information-processing capacity of a fully-fledged quantum system. This simple example powerfully illustrates the difficulties faced by hybrid quantum–classical models in accounting for the full range of behaviour of quantum systems.A Spin-Based Pathway to Testing the Quantum Nature of Gravity
(2025)
Quantum computing quantum Monte Carlo algorithm
Physical Review A American Physical Society (APS) 112:2 (2025) 022428
Complex Heat Capacity as a Witness of Spatio-Temporal Entanglement
(2025)