Interference in the Heisenberg picture of quantum field theory, local elements of reality, and fermions

Physical Review D American Physical Society (APS) 104:6 (2021) 065013

Authors:

Chiara Marletto, Nicetu Tibau Vidal, Vlatko Vedral

Temporal teleportation with pseudo-density operators: How dynamics emerges from temporal entanglement.

Science advances 7:38 (2021) eabe4742

Authors:

Chiara Marletto, Vlatko Vedral, Salvatore Virzì, Alessio Avella, Fabrizio Piacentini, Marco Gramegna, Ivo Pietro Degiovanni, Marco Genovese

Abstract:

We show that, by using temporal quantum correlations as expressed by pseudo-density operators (PDOs), it is possible to recover formally the standard quantum dynamical evolution as a sequence of teleportations in time. We demonstrate that any completely positive evolution can be formally reconstructed by teleportation with different temporally correlated states. This provides a different interpretation of maximally correlated PDOs, as resources to induce quantum time evolution. Furthermore, we note that the possibility of this protocol stems from the strict formal correspondence between spatial and temporal entanglement in quantum theory. We proceed to demonstrate experimentally this correspondence, by showing a multipartite violation of generalized temporal and spatial Bell inequalities and verifying agreement with theoretical predictions to a high degree of accuracy, in high-quality photon qubits.

Sagnac interferometer and the quantum nature of gravity

Journal of Physics Communications IOP Publishing 5:5 (2021) 051001

Authors:

Chiara Marletto, Vlatko Vedral

Decoherence effects in non-classicality tests of gravity

New Journal of Physics IOP Publishing 23:4 (2021) 43040

Authors:

Simone Rijavec, Matteo Carlesso, Angelo Bassi, Vlatko Vedral, Chiara Marletto

Abstract:

The experimental observation of a clear quantum signature of gravity is believed to be out of the grasp of current technology. However, several recent promising proposals to test the possible existence of non-classical features of gravity seem to be accessible by the state-of-art table-top experiments. Among them, some aim at measuring the gravitationally induced entanglement between two masses which would be a distinct non-classical signature of gravity. We explicitly study, in two of these proposals, the effects of decoherence on the system's dynamics by monitoring the corresponding degree of entanglement. We identify the required experimental conditions necessary to perform successfully the experiments. In parallel, we account also for the possible effects of the continuous spontaneous localization (CSL) model, which is the most known among the models of spontaneous wavefunction collapse. We find that any value of the parameters of the CSL model would completely hinder the generation of gravitationally induced entanglement.

The science of can and can't

The New Scientist Elsevier 250:3330 (2021) 34-37