Nonadiabatic geometric quantum computation
Physical Review A - Atomic, Molecular, and Optical Physics 76:4 (2007)
Abstract:
A different way to realize nonadiabatic geometric quantum computation is proposed by varying parameters in the Hamiltonian for nuclear-magnetic resonance, where the dynamical and geometric phases are implemented separately without the usual operational process. Therefore the phase accumulated in the geometric gate is a pure geometric phase for any input state. In comparison with the conventional geometric gates by rotating operations, our approach simplifies experimental implementations making them robust to certain experimental errors. In contrast to the unconventional geometric gates, our approach distinguishes the total and geometric phases and offers a wide choice of the relations between the dynamical and geometric phases. © 2007 The American Physical Society.Composite geometric phase for multipartite entangled states
Physical Review A - Atomic, Molecular, and Optical Physics 76:3 (2007)
Abstract:
When an entangled state evolves under local unitaries, the entanglement in the state remains fixed. Here we show that the dynamical phase acquired by an entangled state in such a scenario can always be understood as the sum of the dynamical phases of its subsystems. In contrast, the equivalent statement for the geometric phase is not generally true unless the state is separable. For an entangled state an additional term is present, the mutual geometric phase, that measures the change the additional correlations present in the entangled state make to the geometry of the state space. For N qubit states we find that this change can be explained solely by classical correlations for states with a Schmidt decomposition and solely by quantum correlations for W states. © 2007 The American Physical Society.Entanglement in single-particle systems
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 463:2085 (2007) 2277-2286
Abstract:
We address some of the most commonly raised questions about entanglement, especially with regard to the so-called occupation number entanglement. To answer unambiguously whether entanglement can exist in a one-atom delocalized state, we propose an experiment capable of showing violations of Bell's inequality using only this state and local operations. We review previous discussions for one-photon non-locality and propose a specific experiment for creating one-atom entangled states, showing that the superselection rule of atom number can be overcome. As a by-product, this experiment suggests a means of creating an entangled state of two different chemical species. By comparison with a massless system, we argue that there should be no fundamental objection to such a superposition and its creation may be within reach of present technology. © 2007 The Royal Society.Quantumness without quantumness: Entanglement as classical correlations in higher dimensions
Journal of Modern Optics 54:13-15 (2007) 2185-2192
Abstract:
I exploit the formal equivalence between the ground state of a d-dimensional quantum system and a d + 1-dimensional classical Ising chain to represent quantum entanglement in terms of classical correlations only. This offers a general "local hidden variable model" for all quantum phenomena existing in one dimension lower than the (hidden variable) classical model itself. The local hidden variable model is not contradicted by the implications of Bell's theorem. Formal theory is presented first and then exemplified by the quantum Ising spin chain in a transverse magnetic field. Here I explicitly show how to derive any two site entanglement in the transverse model from the partition function of the classical Ising spin chain existing in two dimensions. Some speculations are then presented regarding possible fundamental implications of these results.Witnessing macroscopic entanglement in a staggered magnetic field
Physical Review A - Atomic, Molecular, and Optical Physics 76:2 (2007)