Geometry of quantum correlations in space-time

PHYSICAL REVIEW A 98:5 (2018) ARTN 052312

Authors:

Zhikuan Zhao, Robert Pisarczyk, Jayne Thompson, Mile Gu, Vlatko Vedral, Joseph F Fitzsimons

Entanglement between living bacteria and quantized light witnessed by Rabi splitting

Journal of Physics Communications IOP Publishing 2:10 (2018) 101001

Authors:

C Marletto, DM Coles, T Farrow, V Vedral

Proton tunnelling in hydrogen bonds and its implications in an induced-fit model of enzyme catalysis

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences Royal Society 474:2218 (2018) 20180037

Authors:

O Pusuluk, Tristan Farrow, C Deliduman, K Burnett, Vlatko Vedral

Abstract:

The role of proton tunnelling in biological catalysis is investigated here within the frameworks of quantum information theory and thermodynamics. We consider the quantum correlations generated through two hydrogen bonds between a substrate and a prototypical enzyme that first catalyses the tautomerization of the substrate to move on to a subsequent catalysis, and discuss how the enzyme can derive its catalytic potency from these correlations. In particular, we show that classical changes induced in the binding site of the enzyme spreads the quantum correlations among all of the four hydrogen-bonded atoms thanks to the directionality of hydrogen bonds. If the enzyme rapidly returns to its initial state after the binding stage, the substrate ends in a new transition state corresponding to a quantum superposition. Open quantum system dynamics can then naturally drive the reaction in the forward direction from the major tautomeric form to the minor tautomeric form without needing any additional catalytic activity. We find that in this scenario the enzyme lowers the activation energy so much that there is no energy barrier left in the tautomerization, even if the quantum correlations quickly decay.

Proton tunnelling in hydrogen bonds and its implications in an induced-fit model of enzyme catalysis

PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES 474:2218 (2018) ARTN 20180037

Authors:

Onur Pusuluk, Tristan Farrow, Cemsinan Deliduman, Keith Burnett, Vlatko Vedral

Quantum-gravity effects could in principle be witnessed in neutrino-like oscillations

New Journal of Physics IOP Publishing 20:8 (2018) 083011

Authors:

Chiara Marletto, Vlatko Vedral, D Deutsch

Abstract:

Two of us (Marletto and Vedral 2017 Phys. Rev. Lett. 119 240402) recently showed how the quantum character of a physical system, in particular the gravitational field, can in principle be witnessed without directly measuring observables of that system, solely by its ability to mediate entanglement between two other systems. Here we propose a variant of that scheme, where the entanglement is again generated via gravitational interaction, but now between two particles both at sharp locations (very close to each other) but each in a superposition of two different masses. We discuss an in principle example using two hypothetical massive, neutral, weakly-interacting particles generated in a superposition of different masses. The key property of such particles would be that, like neutrinos, they are affected only by weak nuclear interactions and gravity.