Quantum Processes Which Do Not Use Coherence

Physical Review X American Physical Society 6:4 (2016)

Authors:

Benjamin Yadin, J Ma, David Girolami, M Gu, Vlatko Vedral

Abstract:

A major signature of quantum mechanics beyond classical physics is coherence, the existence of superposition states. The recently developed resource theory of quantum coherence allows the formalization of incoherent operations—those operations which cannot create coherence. We identify the set of operations which additionally do not use coherence. These are such that coherence cannot be exploited by a classical observer, who measures incoherent properties of the system, to go beyond classical dynamics. We give a physical interpretation in terms of interferometry and prove a dilation theorem, showing how these operations can always be constructed by the system interacting, in an incoherent way, with an ancilla. Such a physical justification is not known for the incoherent operations; thus, our results lead to a physically well-motivated resource theory of coherence. Next, we investigate the implications for coherence in multipartite systems. We show that quantum correlations can be defined naturally with respect to a fixed basis, providing a link between coherence and quantum discord. We demonstrate the interplay between these two quantities in the operations that we study and suggest implications for the theory of quantum discord by relating these operations to those which cannot create discord.

Verifying Heisenberg's error-disturbance relation using a single trapped ion.

Science advances 2:10 (2016) e1600578-e1600578

Authors:

Fei Zhou, Leilei Yan, Shijie Gong, Zhihao Ma, Jiuzhou He, Taiping Xiong, Liang Chen, Wanli Yang, Mang Feng, Vlatko Vedral

Abstract:

Heisenberg's uncertainty relations have played an essential role in quantum physics since its very beginning. The uncertainty relations in the modern quantum formalism have become a fundamental limitation on the joint measurements of general quantum mechanical observables, going much beyond the original discussion of the trade-off between knowing a particle's position and momentum. Recently, the uncertainty relations have generated a considerable amount of lively debate as a result of the new inequalities proposed as extensions of the original uncertainty relations. We report an experimental test of one of the new Heisenberg's uncertainty relations using a single 40Ca+ ion trapped in a harmonic potential. By performing unitary operations under carrier transitions, we verify the uncertainty relation proposed by Busch, Lahti, and Werner (BLW) based on a general error-trade-off relation for joint measurements on two compatible observables. The positive operator-valued measure, required by the compatible observables, is constructed by single-qubit operations, and the lower bound of the uncertainty, as observed, is satisfied in a state-independent manner. Our results provide the first evidence confirming the BLW-formulated uncertainty at a single-spin level and will stimulate broad interests in various fields associated with quantum mechanics.

Evolution without evolution, and without ambiguities

(2016)

Authors:

Chiara Marletto, Vlatko Vedral

No-hypersignaling principle

(2016)

Authors:

Michele Dall'Arno, Sarah Brandsen, Alessandro Tosini, Francesco Buscemi, Vlatko Vedral

Device-independent tests of quantum measurements

(2016)

Authors:

Michele Dall'Arno, Sarah Brandsen, Francesco Buscemi, Vlatko Vedral