Constructor theory of information.

Proceedings. Mathematical, physical, and engineering sciences 471:2174 (2015) 20140540

Authors:

David Deutsch, Chiara Marletto

Abstract:

We propose a theory of information expressed solely in terms of which transformations of physical systems are possible and which are impossible-i.e. in constructor-theoretic terms. It includes conjectured, exact laws of physics expressing the regularities that allow information to be physically instantiated. Although these laws are directly about information, independently of the details of particular physical instantiations, information is not regarded as an a priori mathematical or logical concept, but as something whose nature and properties are determined by the laws of physics alone. This theory solves a problem at the foundations of existing information theory, namely that information and distinguishability are each defined in terms of the other. It also explains the relationship between classical and quantum information, and reveals the single, constructor-theoretic property underlying the most distinctive phenomena associated with the latter, including the lack of in-principle distinguishability of some states, the impossibility of cloning, the existence of pairs of variables that cannot simultaneously have sharp values, the fact that measurement processes can be both deterministic and unpredictable, the irreducible perturbation caused by measurement, and locally inaccessible information (as in entangled systems).

Measuring quantumness: from theory to observability in interferometric setups

(2015)

Authors:

Leonardo Ferro, Rosario Fazio, Fabrizio Illuminati, Giuseppe Marmo, Vlatko Vedral, Saverio Pascazio

Quantum optics, molecular spectroscopy and low-temperature spectroscopy: general discussion.

Chapter in , 184 (2015) 275-303

Authors:

Michel Orrit, Geraint Evans, Thorben Cordes, Irena Kratochvilova, William Moerner, Lisa-Maria Needham, Sergey Sekatskii, Yuri Vainer, Sanli Faez, Vlatko Vedral, Himangshu Prabal Goswami, Alex Clark, Alfred J Meixner, Lukasz Piatkowski, Victoria Birkedal, Vahid Sandoghdar, Gary M Skinner, Wolfgang Langbein, Jiangfeng Du, Felix Koberling, Jens Michaelis, Fazhan Shi, Robert Taylor, Arindam Chowdhury, Brahim Lounis, Niek van Hulst, Patrick El-Khoury, Lukas Novotny, Jörg Wrachtrup, Tristan Farrow, Andrei Naumov, Maxim Gladush, Ronald Hanson

Towards witnessing quantum effects in complex molecules.

Faraday discussions 184 (2015) 183-191

Authors:

T Farrow, RA Taylor, V Vedral

Abstract:

Whether many-body objects like organic molecules can exhibit full quantum behaviour, including entanglement, is an open fundamental question. We present a generic theoretical protocol for entangling two organic molecules, such as dibenzoterrylene in anthracene. The availability of organic dye molecules with two-level energy structures characterised by sharp and intense emission lines are characteristics that position them favourably as candidates for quantum information processing technologies involving single-photons. Quantum entanglement can in principle be generated between several organic molecules by carefully interfering their photoluminescence spectra. Major milestones have been achieved in the last 10 years showcasing entanglement in diverse systems including ions, cold atoms, superconductors, photons, quantum dots and NV-centres in diamond, but not yet in molecules.

Generalized Pauli constraints: Hierarchy of pinning and quasipinning-measure

arXiv (2015)

Authors:

F Tennie, V Vedral, C Schilling

Abstract:

The Pauli exclusion principle (PEP) has a tremendous impact on the properties and the behavior of most fermionic quantum systems. Remarkably, even stronger restrictions on fermionic natural occupation numbers follow from the fermionic exchange statistics. Based on a hierarchy induced by PEP we develop an operationally meaningful measure which allows to quantify the potential physical relevance of those generalized Pauli constraints (GPC) beyond the well-established relevance of PEP. By studying a few fermions in a harmonic trap we explore and confirm for the first time such nontrivial significance of GPC not only for weak couplings but even up to medium interaction strengths.