The wide-field, multiplexed, spectroscopic facility WEAVE: survey design, overview, and simulated implementation
Monthly Notices of the Royal Astronomical Society Oxford University Press 530:3 (2023) 2688-2730
Authors:
Shoko Jin, Scott Trager, Gavin Dalton, J Alfonso L Aguerri, Janet Drew, Jesús Falcón-Barroso, Boris Gänsicke, Vanessa Hill, Angela Iovino, Matthew Pieri, Bianca Poggianti, Daniel Smith, Antonella Vallenari, Don Carlos Abrams, David Aguado, Yago Ascasibar, Vasily Belokurov, Clotilde Laigle, Alireza Molaeinezhad, David Terrett, James Gilbert, Sarah Hughes, Matt Jarvis, Ian Lewis, Sébastien Peirani, Ellen Schallig, John Stott
Abstract:
WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable ‘mini’ integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366−959 nm at R ∼ 5000, or two shorter ranges at R ∼ 20 000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy’s origins by completing Gaia’s phase-space information, providing metallicities to its limiting magnitude for ∼3 million stars and detailed abundances for ∼1.5 million brighter field and open-cluster stars; (ii) survey ∼0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey ∼400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z < 0.5 cluster galaxies; (vi) survey stellar populations and kinematics in ∼25 000 field galaxies at 0.3 ≲ z ≲ 0.7; (vii) study the cosmic evolution of accretion and star formation using >1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z > 2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.