MIGHTEE-H I: the first MeerKAT H I mass function from an untargeted interferometric survey

Monthly Notices of the Royal Astronomical Society Oxford University Press 522:4 (2023) 5308-5319

Authors:

Anastasia A Ponomareva, Matt J Jarvis, Hengxing Pan, Natasha Maddox, Michael G Jones, Bradley S Frank, Sambatriniaina HA Rajohnson, Wanga Mulaudzi, Martin Meyer, Elizabeth AK Adams, Maarten Baes, Kelley M Hess, Sushma Kurapati, Isabella Prandoni, Francesco Sinigaglia, Kristine Spekkens, Madalina Tudorache, Ian Heywood, Jordan D Collier, Srikrishna Sekhar

Abstract:

We present the first measurement of the H I mass function (HIMF) using data from MeerKAT, based on 276 direct detections from the MeerKAT International GigaHertz Tiered Extragalactic Exploration (MIGHTEE) Survey Early Science data covering a period of approximately a billion years (0 ≤ z ≤ 0.084). This is the first HIMF measured using interferometric data over non-group or cluster field, i.e. a deep blank field. We constrain the parameters of the Schechter function that describes the HIMF with two different methods: 1/Vmax and modified maximum likelihood (MML). We find a low-mass slope α=−1.29+0.37−0.26 , ‘knee’ mass log10(M∗/M⊙)=10.07+0.24−0.24 and normalization log10(ϕ∗/Mpc−3)=−2.34+0.32−0.36 (H0 = 67.4 km s−1 Mpc−1) for 1/Vmax , and α=−1.44+0.13−0.10 , ‘knee’ mass log10(M∗/M⊙)=10.22+0.10−0.13 and normalization log10(ϕ∗/Mpc−3)=−2.52+0.19−0.14 for MML. When using 1/Vmax we find both the low-mass slope and ‘knee’ mass to be consistent within 1σ with previous studies based on single-dish surveys. The cosmological mass density of H I is found to be slightly larger than previously reported: ΩHI=5.46+0.94−0.99×10−4h−167.4 from 1/Vmax and ΩHI=6.31+0.31−0.31×10−4h−167.4 from MML but consistent within the uncertainties. We find no evidence for evolution of the HIMF over the last billion years.

Spectroscopic confirmation of four metal-poor galaxies at z = 10.3–13.2

Nature Astronomy Springer Nature 7:5 (2023) 622-632

Authors:

Emma Curtis-Lake, Stefano Carniani, Alex Cameron, Stephane Charlot, Peter Jakobsen, Roberto Maiolino, Andrew Bunker, Joris Witstok, Renske Smit, Jacopo Chevallard, Chris Willott, Pierre Ferruit, Santiago Arribas, Nina Bonaventura, Mirko Curti, Francesco D’Eugenio, Marijn Franx, Giovanna Giardino, Tobias J Looser, Nora Lützgendorf, Michael V Maseda, Tim Rawle, Hans-Walter Rix, Bruno Rodríguez del Pino, Hannah Übler, Marco Sirianni, Alan Dressler, Eiichi Egami, Daniel J Eisenstein, Ryan Endsley, Kevin Hainline, Ryan Hausen, Benjamin D Johnson, Marcia Rieke, Brant Robertson, Irene Shivaei, Daniel P Stark, Sandro Tacchella, Christina C Williams, Christopher NA Willmer, Rachana Bhatawdekar, Rebecca Bowler, Kristan Boyett, Zuyi Chen, Anna de Graaff, Jakob M Helton, Raphael E Hviding, Gareth C Jones, Nimisha Kumari, Jianwei Lyu, Erica Nelson, Michele Perna, Lester Sandles, Aayush Saxena, Katherine A Suess, Fengwu Sun, Michael W Topping, Imaan EB Wallace, Lily Whitler

Molecular gas content and high excitation of a massive main-sequence galaxy at z = 3

Astronomy & Astrophysics EDP Sciences 673 (2023) l13

Authors:

Han Lei, Francesco Valentino, Georgios E Magdis, Vasily Kokorev, Daizhong Liu, Dimitra Rigopoulou, Shuowen Jin, Emanuele Daddi

Zoobot: Adaptable Deep Learning Models for GalaxyMorphology

The Journal of Open Source Software The Open Journal 8:85 (2023) 5312

Authors:

Mike Walmsley, Campbell Allen, Ben Aussel, Micah Bowles, Kasia Gregorowicz, Inigo Val Slijepcevic, Chris J Lintott, Anna MM Scaife, Maja Jabłońska, Kosio Karchev, Denise Lanzieri, Devina Mohan, David O’Ryan, Bharath Saiguhan, Crisel Suárez, Nicolás Guerra-Varas, Renuka Velu

MaNGA DynPop – I. Quality-assessed stellar dynamical modelling from integral-field spectroscopy of 10K nearby galaxies: a catalogue of masses, mass-to-light ratios, density profiles, and dark matter

Monthly Notices of the Royal Astronomical Society Oxford University Press 522:4 (2023) 6326-6353

Authors:

Kai Zhu, Shengdong Lu, Michele Cappellari, Ran Li, Shude Mao, Liang Gao

Abstract:

This is the first paper in our series on the combined analysis of the Dynamics and stellar Population (DynPop) for the MaNGA survey in the final SDSS Data Release 17 (DR17). Here, we present a catalogue of dynamically determined quantities for over 10 000 nearby galaxies based on integral-field stellar kinematics from the MaNGA survey. The dynamical properties are extracted using the axisymmetric Jeans Anisotropic Modelling (JAM) method, which was previously shown to be the most accurate for this kind of study. We assess systematic uncertainties using eight dynamical models with different assumptions. We use two orientations of the velocity ellipsoid: either cylindrically aligned JAMcyl or spherically aligned JAMsph. We also make four assumptions for the models’ dark versus luminous matter distributions: (1) mass-follows-light, (2) free NFW dark halo, (3) cosmologically constrained NFW halo, (4) generalized NFW dark halo, i.e. with free inner slope. In this catalogue, we provide the quantities related to the mass distributions (e.g. the density slopes and enclosed mass within a sphere of a given radius for total mass, stellar mass, and dark matter mass components). We also provide the complete models which can be used to compute the full luminous and mass distribution of each galaxy. Additionally, we visually assess the qualities of the models to help with model selections. We estimate the observed scatter in the measured quantities which decreases as expected with improvements in quality. For the best data quality, we find a remarkable consistency of measured quantities between different models, highlighting the robustness of the results.