The ALMA-CRISTAL survey: Extended [CII] emission in an interacting galaxy system at z ∼ 5.5
Astronomy & Astrophysics EDP Sciences 699 (2025) a256
Abstract:
The ALMA [C II] Resolved Ism in STar-forming gALaxies (CRISTAL) survey is a Cycle 8 ALMA Large Program that studies the cold- gas component of high-redshift galaxies. Its subarcsecond-resolution observations are key to distinguishing physical mechanisms that shaped galaxies during cosmic dawn. In this paper, we explore the morphology and kinematics of the cold gas, star-forming, and stellar components in the star-forming main-sequence galaxy CRISTAL-05/HZ3, at z = 5.54. Our analysis includes ALMA observations at a spatial resolution of 0.3″ (∼2 kpc) of the [C II] line. While CRISTAL-05 was previously classified as a single source, our observations reveal that the system is a close interacting pair that is surrounded by an extended component of carbon-enriched gas. This is imprinted in the disturbed elongated [C II] morphology and in the separation of the two components in the position-velocity diagram (∼100 km s −1 ). The central region is composed of two components, named C05-NW and C05-SE, and the former is the dominant component. A significant fraction of [C II] arises beyond the close pair up to 10 kpc, while the regions forming new massive stars and the stellar component seem compact (r [C II] ∼4 × r UV ), as traced by rest-frame UV and optical imaging obtained with the Hubble Space Telescope and the James Webb Space Telescope. Our kinematic model, constructed using the DYSMALpy software, yields a minor contribution of dark matter of C05-NW within a radius of ∼2 × R eff . Finally, we explore the resolved [C II] /far-IR ratios as a proxy for shock-heating produced by this merger. We argue that the extended [C II] emission is mainly caused by the merger of the galaxies, which could not be discerned with lower-resolution observations. Our work emphasizes the need for high-resolution observations to fully characterize the dynamic stages of infant galaxies and the physical mechanisms that drive the metal enrichment of the circumgalactic medium.Galaxy Zoo CEERS: Bar Fractions Up to z ∼ 4.0
The Astrophysical Journal American Astronomical Society 987:1 (2025) 74
Abstract:
We study the evolution of the bar fraction in disk galaxies between 0.5 < z < 4.0 using multiband colored images from JWST Cosmic Evolution Early Release Science Survey (CEERS). These images were classified by citizen scientists in a new phase of the Galaxy Zoo (GZ) project called GZ CEERS. Citizen scientists were asked whether a strong or weak bar was visible in the host galaxy. After considering multiple corrections for observational biases, we find that the bar fraction decreases with redshift in our volume-limited sample (n = 398); from 25−4+6 % at 0.5 < z < 1.0 to 3−1+6 % at 3.0 < z < 4.0. However, we argue it is appropriate to interpret these fractions as lower limits. Disentangling real changes in the bar fraction from detection biases remains challenging. Nevertheless, we find a significant number of bars up to z = 2.5. This implies that disks are dynamically cool or baryon dominated, enabling them to host bars. This also suggests that bar-driven secular evolution likely plays an important role at higher redshifts. When we distinguish between strong and weak bars, we find that the weak bar fraction decreases with increasing redshift. In contrast, the strong bar fraction is constant between 0.5 < z < 2.5. This implies that the strong bars found in this work are robust long-lived structures, unless the rate of bar destruction is similar to the rate of bar formation. Finally, our results are consistent with disk instabilities being the dominant mode of bar formation at lower redshifts, while bar formation through interactions and mergers is more common at higher redshifts.TDCOSMO XXIII. First spatially resolved kinematics of the lens galaxy obtained using JWST-NIRSpec to improve time-delay cosmography
(2025)
The JWST Emission Line Survey (JELS): an untargeted search for H α emission line galaxies at z > 6 and their physical properties
Monthly Notices of the Royal Astronomical Society Oxford University Press 541:2 (2025) 1348-1376
Abstract:
We present the first results of the JWST Emission Line Survey (JELS). Utilizing the first NIRCam narrow-band imaging at 4.7 m, over 63 arcmin in the PRIMER/COSMOS field, we have identified 609 emission line galaxy candidates. From these, we robustly selected 35 H star-forming galaxies at , with H star-formation rates () of . Combining our unique H sample with the exquisite panchromatic data in the field, we explored their physical properties and star-formation histories, and compared these to a broad-band selected sample at which has offered vital new insights into the nature of high-redshift galaxies. UV-continuum slopes () were considerably redder for our H sample () compared to the broad-band sample (). This was not due to dust attenuation as our H sample was relatively dust-poor (median ); instead, we argue that the reddened slopes could be due to nebular continuum. We compared and the UV-continuum-derived to SED-fitted measurements averaged over canonical time-scales of 10 and 100 Myr ( and ). We found an increase in recent SFR for our sample of H emitters, particularly at lower stellar masses (). We also found that strongly traces SFR averaged over 10 Myr time-scales, whereas the UV-continuum overpredicts SFR on 100 Myr time-scales at low stellar masses. These results point to our H sample undergoing ‘bursty’ star formation. Our F356W sample showed a larger scatter in across all stellar masses, which has highlighted how narrow-band photometric selections of H emitters are key to quantifying the burstiness of star-formation activity.JWST reveals cosmic ray dominated chemistry in the local ULIRG IRAS 07251$-$0248
(2025)