A multidimensional view of a unified model for TDEs
Monthly Notices of the Royal Astronomical Society Oxford University Press 540:4 (2025) 3069-3085
Abstract:
Tidal disruption events (TDEs) can generate non-spherical, relativistic, and optically thick outflows. Simulations show that the radiation we observe is reprocessed by these outflows. According to a unified model suggested by these simulations, the spectral energy distributions (SEDs) of TDEs depend strongly on viewing angle: low [high] optical-to-X-ray ratios (OXRs) correspond to face-on [edge-on] orientations. Post-processing with radiative transfer codes has simulated the emergent spectra but has so far been carried out only in a quasi-1D framework, with three atomic species (H, He, and O). Here, we present 2.5D Monte Carlo radiative transfer simulations which model the emission from a non-spherical outflow, including a more comprehensive set of cosmically abundant species. While the basic trend of OXR increasing with inclination is preserved, the inherently multi-D nature of photon transport through the non-spherical outflow significantly affects the emergent SEDs. Relaxing the quasi-1D approximation allows photons to preferentially escape in (polar) directions of lower optical depth, resulting in a greater variation of bolometric luminosity as a function of inclination. According to our simulations, inclination alone may not fully explain the large dynamic range of observed TDE OXRs. We also find that including metals, other than O, changes the emergent spectra significantly, resulting in stronger absorption and emission lines in the extreme ultraviolet, as well as a greater variation in the OXR as a function of inclination. Whilst our results support previously proposed unified models for TDEs, they also highlight the critical importance of multi-D ionization and radiative transfer.Hydrodynamic simulations of black hole evolution in AGN discs II: inclination damping for partially embedded satellites
(2025)
Hydrodynamic simulations of black hole evolution in AGN discs I: orbital alignment of highly inclined satellites
(2025)
Project Dinos II: Redshift evolution of dark and luminous matter density profiles in strong-lensing elliptical galaxies across $0.1 < z < 0.9$
(2025)
The Evolutionary Map of the Universe: A new radio atlas for the southern hemisphere sky
Publications of the Astronomical Society of Australia Cambridge University Press 42 (2025) e071