The lens SW05 J143454.4+522850: a fossil group at redshift 0.6?

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 506:2 (2021) 1715-1722

Authors:

Philipp Denzel, Onur Çatmabacak, Jonathan Coles, Claude Cornen, Robert Feldmann, Ignacio Ferreras, Xanthe Gwyn Palmer, Rafael Küng, Dominik Leier, Prasenjit Saha, Aprajita Verma

The radio loudness of SDSS quasars from the LOFAR Two-metre Sky Survey: ubiquitous jet activity and constraints on star formation

Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 506:4 (2021) 5888-5907

Authors:

C Macfarlane, Pn Best, J Sabater, G Gürkan, Matt Jarvis, Hja Röttgering, Rd Baldi, G Calistro Rivera, Kj Duncan, Lk Morabito, I Prandoni, E Retana-Montenegro

Abstract:

We examine the distribution of radio emission from ∼42 000 quasars from the Sloan Digital Sky Survey, as measured in the LOFAR Two-metre Sky Survey (LoTSS). We present a model of the radio luminosity distribution of the quasars that assumes that every quasar displays a superposition of two sources of radio emission: active galactic nuclei (jets) and star formation. Our two-component model provides an excellent match to the observed radio flux density distributions across a wide range of redshifts and quasar optical luminosities; this suggests that the jet-launching mechanism operates in all quasars but with different powering efficiency. The wide distribution of jet powers allows for a smooth transition between the ‘radio-quiet’ and ‘radio-loud’ quasar regimes, without need for any explicit bimodality. The best-fitting model parameters indicate that the star formation rate of quasar host galaxies correlates strongly with quasar luminosity and also increases with redshift at least out to z ∼ 2. For a model where star formation rate scales as Lαbol(1+z)β⁠, we find α = 0.47 ± 0.01 and β = 1.61 ± 0.05, in agreement with far-infrared studies. Quasars contribute ≈0.15 per cent of the cosmic star formation rate density at z = 0.5, rising to 0.4 per cent by z ∼ 2. The typical radio jet power is seen to increase with both increasing optical luminosity and black hole mass independently, but does not vary with redshift, suggesting intrinsic properties govern the production of the radio jets. We discuss the implications of these results for the triggering of quasar activity and the launching of jets.

Repeated mergers, mass-gap black holes, and formation of intermediate-mass black holes in nuclear star clusters

(2021)

Authors:

Giacomo Fragione, Bence Kocsis, Frederic A Rasio, Joseph Silk

High eccentricities and high masses characterize gravitational-wave captures in galactic nuclei as seen by Earth-based detectors

Monthly Notices of the Royal Astronomical Society Oxford University Press 506:2 (2021) 1665-1696

Authors:

Laszlo Gondan, Bence Kocsis

Abstract:

The emission of gravitational waves (GWs) during single-single close encounters in galactic nuclei (GNs) leads to the formation and rapid merger of highly eccentric stellar-mass black hole (BH) binaries. The distinct distribution of physical parameters makes it possible to statistically distinguish this source population from others. Previous studies determined the expected binary parameter distribution for this source population in single GNs. Here, we take into account the effects of dynamical friction, post-Newtonian corrections, and observational bias to determine the detected sources' parameter distributions from all GNs in the Universe. We find that the total binary mass distribution of detected mergers is strongly tilted towards higher masses. The distribution of initial peak GW frequency is remarkably high between 1 and 70 Hz, ~50 per cent of GW capture sources form above 10 Hz with e ≥ 0.95. The eccentricity when first entering the LIGO/Virgo/KAGRA band satisfies e10 Hz > 0.1 for over 92 per cent of sources and e10 Hz > 0.8 for more than half of the sources. At the point when the pericentre reaches 10GM/c2 the eccentricity satisfies e10M > 0.1 for over ~70 per cent of the sources, making single-single GWcapture events in GNs the most eccentric source population among the currently known stellar-mass binary BH merger channels in our Universe. We identify correlations between total mass, mass ratio, source detection distance, and eccentricities e10 Hz and e10M. The recently measured source parameters of GW190521 lie close to the peak of the theoretical distributions and the estimated escape speed of the host environment is ~7.5 × 103-1.2 × 104 km s-1, making this source a candidate for this astrophysical merger channel.

A Canonical Transformation to Eliminate Resonant Perturbations. I.

American Astronomical Society 162:1 (2021) 22

Authors:

Barnabás Deme, Bence Kocsis