Improved cosmological fits with quantized primordial power spectra
PHYSICAL REVIEW D American Physical Society (APS) 105:8 (2022) 83515
Abstract:
We observationally examine cosmological models based on primordial power spectra with quantized wave vectors. Introducing a linearly quantized power spectrum with k0=3.225×10-4 Mpc-1 and spacing Δk=2.257×10-4 Mpc-1 provides a better fit to the Planck 2018 observations than the concordance baseline, with Δχ2=-8.55. Extending the results of Lasenby et al. [preceding paper, Perturbations and the future conformal boundary, Phys. Rev. D 105, 083514 (2022)PRVDAQ2470-001010.1103/PhysRevD.105.083514], we show that the requirement for perturbations to remain finite beyond the future conformal boundary in a universe containing dark matter and a cosmological constant results in a linearly quantized primordial power spectrum. It is found that the infrared cutoffs for this future conformal boundary quantized cosmology do not provide cosmic microwave background power spectra compatible with observations, but future theories may predict more observationally consistent quantized spectra.Perturbations and the future conformal boundary
PHYSICAL REVIEW D American Physical Society (APS) 105:8 (2022) 83514
Abstract:
The concordance model of cosmology predicts a universe which finishes in a finite amount of conformal time at a future conformal boundary. We show that for particular cases we study, the background variables and perturbations may be analytically continued beyond this boundary and that the "end of the universe"is not necessarily the end of their physical development. Remarkably, these theoretical considerations of the end of the universe might have observable consequences today: perturbation modes consistent with these boundary conditions have a quantized power spectrum which may be relevant to features seen in the large scale cosmic microwave background. Mathematically these cosmological models may either be interpreted as a palindromic universe mirrored in time, a reflecting boundary condition, or a double cover, but are identical with respect to their observational predictions and stand in contrast to the predictions of conformal cyclic cosmologies.Radio Galaxy Zoo: Using semi-supervised learning to leverage large unlabelled data-sets for radio galaxy classification under data-set shift
ArXiv 2204.08816 (2022)
A new look at local ultraluminous infrared galaxies: the atlas and radiative transfer models of their complex physics
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 512:4 (2022) 5183-5213
Hybrid photometric redshifts for sources in the COSMOS and XMM-LSS fields
Monthly Notices of the Royal Astronomical Society Oxford University Press 513:3 (2022) 3719-3733