Dynamical Formation of MergingStellar-Mass Binary Black Holes

Chapter in Handbook of Gravitational Wave Astronomy, Springer Nature (2022) 661-704

WALLABY pilot survey: Public release of H i data for almost 600 galaxies from phase 1 of ASKAP pilot observations

Publications of the Astronomical Society of Australia Cambridge University Press (CUP) 39 (2022) e058

Authors:

T Westmeier, N Deg, K Spekkens, TN Reynolds, AX Shen, S Gaudet, S Goliath, MT Huynh, P Venkataraman, X Lin, T O’Beirne, B Catinella, L Cortese, H Dénes, A Elagali, B-Q For, GIG Józsa, C Howlett, JM van der Hulst, RJ Jurek, P Kamphuis, VA Kilborn, D Kleiner, BS Koribalski, K Lee-Waddell, C Murugeshan, J Rhee, P Serra, L Shao, L Staveley-Smith, J Wang, OI Wong, MA Zwaan, JR Allison, CS Anderson, Lewis Ball, DC-J Bock, D Brodrick, JD Bunton, FR Cooray, N Gupta, DB Hayman, EK Mahony, VA Moss, A Ng, SE Pearce, W Raja, DN Roxby, MA Voronkov, KA Warhurst, HM Courtois, K Said

Spectroscopy with the JWST Advanced Deep Extragalactic Survey (JADES) -- the NIRSpec/NIRCam GTO galaxy evolution project

(2021)

Building high accuracy emulators for scientific simulations with deep neural architecture search

Machine Learning: Science and Technology IOP Science 3:1 (2021) 015013

Authors:

MF Kasim, D Watson-Parris, L Deaconu, S Oliver, Peter Hatfield, DH Froula, Gianluca Gregori, M Jarvis, Samar Khatiwala, J Korenaga, Jonas Topp-Mugglestone, E Viezzer, Sam Vinko

Abstract:

Computer simulations are invaluable tools for scientific discovery. However, accurate simulations are often slow to execute, which limits their applicability to extensive parameter exploration, large-scale data analysis, and uncertainty quantification. A promising route to accelerate simulations by building fast emulators with machine learning requires large training datasets, which can be prohibitively expensive to obtain with slow simulations. Here we present a method based on neural architecture search to build accurate emulators even with a limited number of training data. The method successfully emulates simulations in 10 scientific cases including astrophysics, climate science, biogeochemistry, high energy density physics, fusion energy, and seismology, using the same super-architecture, algorithm, and hyperparameters. Our approach also inherently provides emulator uncertainty estimation, adding further confidence in their use. We anticipate this work will accelerate research involving expensive simulations, allow more extensive parameters exploration, and enable new, previously unfeasible computational discovery.

New constraints on light axion-like particles using Chandra transmission grating spectroscopy of the powerful cluster-hosted quasar H1821+643

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 510:1 (2021) 1264-1277

Authors:

Júlia Sisk-Reynés, James H Matthews, Christopher S Reynolds, Helen R Russell, Robyn N Smith, MC David Marsh