How robustly can we constrain the low-mass end of the z ∼ 6−7 stellar mass function? The limits of lensing models and stellar population assumptions in the Hubble Frontier Fields
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 501:2 (2020) 1568-1590
Beyond halo mass: quenching galaxy mass assembly at the edge of filaments
Monthly Notices of the Royal Astronomical Society Oxford University Press 501:3 (2020) 4635-4656
Abstract:
We examine how the mass assembly of central galaxies depends on their location in the cosmic web. The HORIZON-AGN simulation is analysed at z ∼ 2 using the DISPERSE code to extract multi-scale cosmic filaments. We find that the dependency of galaxy properties on large-scale environment is mostly inherited from the (large-scale) environmental dependency of their host halo mass. When adopting a residual analysis that removes the host halo mass effect, we detect a direct and non-negligible influence of cosmic filaments. Proximity to filaments enhances the build-up of stellar mass, a result in agreement with previous studies. However, our multi-scale analysis also reveals that, at the edge of filaments, star formation is suppressed. In addition, we find clues for compaction of the stellar distribution at close proximity to filaments. We suggest that gas transfer from the outside to the inside of the haloes (where galaxies reside) becomes less efficient closer to filaments, due to high angular momentum supply at the vorticity-rich edge of filaments. This quenching mechanism may partly explain the larger fraction of passive galaxies in filaments, as inferred from observations at lower redshifts.The distribution and properties of DLAs at z ≤ 2 in the EAGLE simulations
Monthly Notices of the Royal Astronomical Society Oxford University Press 501:3 (2020) 4396-4419
Abstract:
Determining the spatial distribution and intrinsic physical properties of neutral hydrogen on cosmological scales is one of the key goals of next-generation radio surveys. We use the EAGLE galaxy formation simulations to assess the properties of damped Lyman α absorbers (DLAs) that are associated with galaxies and their underlying dark matter haloes between 0 ≤ z ≤ 2. We find that the covering fraction of DLAs increases at higher redshift; a significant fraction of neutral atomic hydrogen (H I) resides in the outskirts of galaxies with stellar mass ≥1010 M⊙; and the covering fraction of DLAs in the circumgalactic medium (CGM) is enhanced relative to that of the interstellar medium (ISM) with increasing halo mass. Moreover, we find that the mean density of the H I in galaxies increases with increasing stellar mass, while the DLAs in high- and low-halo mass systems have higher column densities than those in galaxies with intermediate halo masses (∼1012 M⊙ at z = 0). These high-impact CGM DLAs in high-stellar mass systems tend to be metal poor, likely tracing smooth accretion. Overall, our results point to the CGM playing an important role in DLA studies at high redshift (z ≥ 1). However, their properties are impacted both by numerical resolution and the detailed feedback prescriptions employed in cosmological simulations, particularly that of active galactic nuclei.The role of AGN on the structure, kinematics and evolution of ETGs in the Horizon simulations
(2020)