Anisotropic Mass Segregation in Rotating Globular Clusters
ASTROPHYSICAL JOURNAL American Astronomical Society 887:2 (2019) ARTN 123
Abstract:
We investigate the internal dynamics of anisotropic, rotating globular clusters with a multimass stellar population by performing new direct N-body simulations. In addition to the well-known radial mass segregation effect, where heavy stars and stellar remnants sink toward the center of the cluster, we find a mass segregation in the distribution of orbital inclinations as well. This newly discovered anisotropic mass segregation leads to the formation of a disk-like structure of massive objects near the equatorial plane of a rotating cluster. This result has important implications on the expected spatial distribution of black holes in globular clusters.Binary intermediate-mass black hole mergers in globular clusters
(2019)
Resolving the Interstellar Medium in the Nuclear Region of Two z = 5.78 Quasar Host Galaxies with ALMA
The Astrophysical Journal American Astronomical Society 887:1 (2019) 40
[CI](1-0) and [CI](2-1) in Resolved Local Galaxies
ASTROPHYSICAL JOURNAL 887:1 (2019) ARTN 105
Abstract:
© 2019. The American Astronomical Society. All rights reserved. We present resolved [C i] line intensities of 18 nearby galaxies observed with the SPIRE FTS spectrometer on the Herschel Space Observatory. We use these data along with resolved CO line intensities from J up = 1 to 7 to interpret what phase of the interstellar medium the [C i] lines trace within typical local galaxies. A tight, linear relation is found between the intensities of the CO(4-3) and [C i](2-1) lines; we hypothesize this is due to the similar upper level temperature of these two lines. We modeled the [C i] and CO line emission using large-velocity gradient models combined with an empirical template. According to this modeling, the [C i](1-0) line is clearly dominated by the low-excitation component. We determine [C i] to molecular mass conversion factors for both the [C i](1-0) and [C i](2-1) lines, with mean values of α [C i](1-0) = 7.3 M o K-1 km-1 s pc-2 and α [C i](2-1) = 34 M o K-1 km-1 s pc-2 with logarithmic root-mean-square spreads of 0.20 and 0.32 dex, respectively. The similar spread of α [C I](1-0) to αCO (derived using the CO(2-1) line) suggests that [C i](1-0) may be just as good a tracer of cold molecular gas as CO(2-1) in galaxies of this type. On the other hand, the wider spread of α [C i](2-1) and the tight relation found between [C i](2-1) and CO(4-3) suggest that much of the [C i](2-1) emission may originate in warmer molecular gas.Radio observations of supernova remnant G1.9+0.3
Monthly Notices of the Royal Astronomical Society Oxford University Press 492:2 (2019) 2606-2621