Stratified disc wind models for the AGN broad-line region: ultraviolet, optical and X-ray properties

ArXiv 2001.03625 (2020)

Authors:

James H Matthews, Christian Knigge, Nick Higginbottom, Knox S Long, Stuart A Sim, Samuel W Mangham, Edward J Parkinson, Henrietta A Hewitt

The 1.28 GHz MeerKAT DEEP2 Image

The Astrophysical Journal: an international review of astronomy and astronomical physics American Astronomical Society (2020)

Authors:

T Mauch, Wd Cotton, Jj Condon, Am Matthews, Td Abbott, Rm Adam, Ma Aldera, Kmb Asad, Ef Bauermeister, Tgh Bennett, H Bester, Dh Botha, Lrs Brederode, Zb Brits, Sj Buchner, Jp Burger, F Camilo, Jm Chalmers, T Cheetham, D de Villiers, MS de Villiers, Ma Dikgale-Mahlakoana, LJ du Toit, Swp Esterhuyse, Bl Fanaroff

Abstract:

We present the confusion-limited 1.28 GHz MeerKAT DEEP2 image covering one $\approx 68'$ FWHM primary beam area with $7.6''$ FWHM resolution and $0.55 \pm 0.01$ $\mu$Jy/beam rms noise. Its J2000 center position $\alpha=04^h 13^m 26.4^s$, $\delta=-80^\circ 00' 00''$ was selected to minimize artifacts caused by bright sources. We introduce the new 64-element MeerKAT array and describe commissioning observations to measure the primary beam attenuation pattern, estimate telescope pointing errors, and pinpoint $(u,v)$ coordinate errors caused by offsets in frequency or time. We constructed a 1.4 GHz differential source count by combining a power-law count fit to the DEEP2 confusion $P(D)$ distribution from $0.25$ to $10$ $\mu$Jy with counts of individual DEEP2 sources between $10$ $\mu$Jy and $2.5$ mJy. Most sources fainter than $S \sim 100$ $\mu$Jy are distant star-forming galaxies obeying the FIR/radio correlation, and sources stronger than $0.25$ $\mu$Jy account for $\sim93\%$ of the radio background produced by star-forming galaxies. For the first time, the DEEP2 source count has reached the depth needed to reveal the majority of the star formation history of the universe. A pure luminosity evolution of the 1.4 GHz local luminosity function consistent with the Madau & Dickinson (2014) model for the evolution of star-forming galaxies based on UV and infrared data underpredicts our 1.4 GHz source count in the range $-5 \lesssim \log[S(\mathrm{Jy})] \lesssim -4$.

HARMONI - first light spectroscopy for the ELT: spectrograph camera lens mounts

Proceedings of SPIE - The International Society for Optical Engineering SPIE 11451 (2020)

Authors:

A Hidalgo, J Kariuki, J Lynn, W Cheng, A Lowe, Ft Bagci, F Clarke, I Lewis, I Tosh, H Schnetler, J Capone, M Tecza, M Booth, M Rodrigues, N Cann, N Thatte, Z Ozer, T Foster

Abstract:

HARMONI is the first light visible and near-infrared (NIR) integral field spectrograph for the Extremely Large Telescope(ELT). The HARMONI spectrograph will have four near-infrared cameras and two visible, both with seven lenses of various materials and diameters ranging from 286 to 152 mm. The lens mounts design has been optimized for each lens material to compensate for thermal stresses and maintain lens alignment at the operational temperature of 130 K. We discuss their design and mounting concept, as well as assembly and verification steps. We show initial results from two prototypes and outline improvements in the mounting procedures to reach tighter lens alignments. To conclude, we present a description of our future work to measure the decentering of the lenses when cooled down and settled.

HARMONI: First light spectroscopy for the ELT: Final design and assembly plan of the spectrographs

Proceedings of SPIE - The International Society for Optical Engineering SPIE 11447 (2020)

Authors:

Z Ozer, H Schnetler, Ft Bagci, M Booth, M Brock, N Cann, J Capone, Jc Ortiz, G Dalton, N Dobson, T Foster, Ah Valadez, J Kariuki, I Lewis, A Lowe, J Lynn, M Rodrigues, I Tosh, F Clarke, M Tecza, N Thatte

Abstract:

HARMONI is the first light visible and near-IR integral field spectrograph for the ELT. It covers a large spectral range from 450nm to 2450nm with resolving powers from R (≡λ/Δλ) 3500 to 18000 and spatial sampling from 60mas to 4mas. It can operate in two Adaptive Optics modes - SCAO (including a High Contrast capability) and LTAO - or with NOAO. The project is preparing for Final Design Reviews. The instrument uses a field splitter and image slicer to divide the field into 4 sub-units, each providing an input slit to one of four nearly identical spectrographs. This proceeding presents the final opto-mechanical design and the AIV plan of the spectrograph units.

MKT J170456.2-482100: the first transient discovered by MeerKAT

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 491:1 (2020) 560-575

Authors:

Ln Driessen, I McDonald, Dah Buckley, M Caleb, Ej Kotze, Sb Potter, Km Rajwade, A Rowlinson, Bw Stappers, E Tremou, Pa Woudt, Rp Fender, R Armstrong, P Groot, I Heywood, A Horesh, Aj van der Horst, E Koerding, Va McBride, Jca Miller-Jones, Kp Mooley, Ramj Wijers

Abstract:

© 2019 The Author(s) We report the discovery of the first transient with MeerKAT, MKT J170456.2−482100, discovered in ThunderKAT images of the low-mass X-ray binary GX339−4. MKT J170456.2−482100 is variable in the radio, reaching a maximum flux density of 0.71 ± 0.11 mJy on 2019 October 12, and is undetected in 15 out of 48 ThunderKAT epochs. MKT J170456.2−482100 is coincident with the chromospherically active K-type sub-giant TYC 8332-2529-1, and ∼ 18 yr of archival optical photometry of the star shows that it varies with a period of 21.25 ± 0.04 d. The shape and phase of the optical light curve changes over time, and we detect both X-ray and UV emission at the position of MKT J170456.2−482100, which may indicate that TYC 8332-2529-1 has large star spots. Spectroscopic analysis shows that TYC 8332-2529-1 is in a binary, and has a line-of-sight radial velocity amplitude of 43 km s−1. We also observe a spectral feature in antiphase with the K-type sub-giant, with a line-of-sight radial velocity amplitude of ∼ 12 ± 10 km s−1, whose origins cannot currently be explained. Further observations and investigation are required to determine the nature of the MKT J170456.2−482100 system.