Evidence for a jet and outflow from Sgr A*: a continuum and spectral line study

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 499:3 (2020) 3909-3931

Authors:

F Yusef-Zadeh, M Royster, M Wardle, W Cotton, D Kunneriath, I Heywood, J Michail

Cosmological 3D H I gas map with HETDEX Ly alpha emitters and eBOSS QSOs at z=2: IGM-Galaxy/QSO connection and a similar to 40 Mpc scale giant H ii bubble candidate

Astrophysical Journal IOP Publishing 903 (2020) 24

Authors:

Shiro Mukae, Masami Ouchi, Gary J Hill, Karl Gebhardt, Erin Mentuch Cooper, Donghui Jeong, Shun Saito, Maximilian Fabricius, Eric Gawiser, Robin Ciardullo, Daniel Farrow, Dustin Davis, Greg Zeimann, Steven L Finkelstein, Caryl Gronwall, Chenxu Liu, Yechi Zhang, Chris Byrohl, Yoshiaki Ono, Donald P Schneider, Matthew Jarvis, Caitlin M Casey, Ken Mawatari

Abstract:

We present cosmological (30−400 Mpc) distributions of neutral hydrogen (H i) in the intergalactic medium (IGM) traced by Lyα emitters (LAEs) and QSOs at z = 2.1–2.5, selected with the data of the ongoing Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) and the eBOSS survey. Motivated by a previous study of Mukae et al., we investigate spatial correlations of LAEs and QSOs with H i tomography maps reconstructed from H i Lyα forest absorption in the spectra of background galaxies and QSOs obtained by the CLAMATO survey and this study, respectively. In the cosmological volume far from QSOs, we find that LAEs reside in regions of strong H i absorption, i.e., H i rich, which is consistent with results of previous galaxy−background QSO pair studies. Moreover, there is an anisotropy in the H i distribution plot of transverse and line-of-sight distances; on average the H i absorption peak is blueshifted by ~200 km s−1 from the LAE Lyα redshift, reproducing the known average velocity offset between the Lyα emission redshift and the galaxy systemic redshift. We have identified a ~40 Mpc scale volume of H i underdensity that is a candidate for a giant H ii bubble, where six QSOs and an LAE overdensity exist at $\left\langle z\right\rangle =2.16$. The coincidence of the QSO and LAE overdensities with the H i underdensity indicates that the ionizing photon radiation of the QSOs has created a highly ionized volume of multiple proximity zones in a matter overdensity. Our results suggest an evolutionary picture where H i gas in an overdensity of galaxies becomes highly photoionized when QSOs emerge in the galaxies.

The Evolution of Gas-Phase Metallicity and Resolved Abundances in Star-forming Galaxies at $z \approx0.6-1.8$

(2020)

Authors:

S Gillman, AL Tiley, AM Swinbank, U Dudzevičiūtė, RM Sharples, Ian Smail, CM Harrison, Andrew J Bunker, Martin Bureau, M Cirasuolo, Georgios E Magdis, Trevor Mendel, John P Stott

Rise of the Titans: Gas Excitation and Feedback in a Binary Hyper-Luminous Dusty Starburst Galaxy at z~6

(2020)

Authors:

Dominik A Riechers, Hooshang Nayyeri, Denis Burgarella, Bjorn HC Emonts, David L Clements, Asantha Cooray, Rob J Ivison, Seb Oliver, Ismael Perez-Fournon, Dimitra Rigopoulou, Douglas Scott

Stars and gas in the most metal-poor galaxies I: COS and MUSE observations of SBS 0335-052E

ArXiv 2010.13963 (2020)

Authors:

A Wofford, A Vidal-García, A Feltre, J Chevallard, S Charlot, DP Stark, EC Herenz, M Hayes

Abstract:

Among the nearest most metal-poor starburst-dwarf galaxies known, SBS 0335-052E is the most luminous in integrated nebular He II {\lambda}4686 emission. This makes it a unique target to test spectral synthesis models and spectral interpretation tools of the kind that will be used to interpret future rest-frame UV observations of primeval galaxies. Previous attempts to reproduce its He II {\lambda}4686 emission luminosity found that X-ray sources, shocks, and single Wolf-Rayet stars are not main contributors to the He II-ionizing budget; and that only metal-free single rotating stars or binary stars with a top-heavy IMF and an unphysically-low metallicity can reproduce it. We present new UV (COS) and optical (MUSE) spectra which integrate the light of four super star clusters in SBS 0335-052E. Nebular He II, [C III], C III], C IV, and O III] UV emission lines with equivalent widths between 1.7 and 5 {\AA}, and a C IV {\lambda}{\lambda}1548, 1551 P-Cygni like profile are detected. Recent extremely-metal poor shock + precursor models and binary models fail to reproduce the observed optical emission-line ratios. We use different sets of UV and optical observables to test models of constant star formation with single non-rotating stars which account for very massive stars, as blueshifted O V {\lambda}1371 absorption is present. Simultaneously fitting the fluxes of all high-ionization UV lines requires an unphysically-low metallicity. Fitting the P-Cygni like + nebular components of C IV {\lambda}{\lambda}1548, 1551 does not constrain the stellar metallicity and time since the beginning of star formation. We obtain 12+log(O/H)=7.45\pm0.04 and log(C/O)=-0.45(+0.03)(-0.04) for the galaxy. Model-testing would benefit from higher spatial resolution UV and optical spectroscopy of the galaxy.