When galaxies align: intrinsic alignments of the progenitors of elliptical galaxies in the Horizon-AGN simulation

Monthly Notices of the Royal Astronomical Society Oxford University Press 491:January 2020 (2019) 4057-4068

Authors:

James Bate, Nora Elisa Chisari, Sandrine Codis, Garreth Martin, Yohan Dubois, Julien Devriendt, Christophe Pichon, Adrianne Slyz

Abstract:

Elliptical galaxies today appear aligned with the large-scale structure of the Universe, but it is still an open question when they acquire this alignment. Observational data is currently insufficient to provide constraints on the time evolution of intrinsic alignments, and hence existing models range from assuming that galaxies gain some primordial alignment at formation, to suggesting that they react instantaneously to tidal interactions with the large-scale structure. Using the cosmological hydrodynamical simulation Horizon-AGN, we measure the relative alignments between the major axes of galaxies and eigenvectors of the tidal field as a function of redshift. We focus on constraining the time evolution of the alignment of the main progenitors of massive $z=0$ elliptical galaxies, the main weak lensing contaminant at low redshift. We show that this population, which at $z=0$ has a stellar mass above $10^{10.4}$ M$_\odot$, transitions from having no alignment with the tidal field at $z=3$, to a significant alignment by $z=1$. From $z=0.5$ they preserve their alignment at an approximately constant level until $z=0$. We find a mass-dependence of the alignment signal of elliptical progenitors, whereby ellipticals that are less massive today ($10^{10.4}<M/{\rm M}_\odot<10^{10.7}$) do not become aligned till later redshifts ($z<2$), compared to more massive counterparts. We also present an extended study of progenitor alignments in the parameter space of stellar mass and galaxy dynamics, the impact of shape definition and tidal field smoothing.

Star-gas misalignment in galaxies: I. The properties of galaxies from the Horizon-AGN simulation and comparisons to SAMI

(2019)

Authors:

Donghyeon J Khim, Sukyoung K Yi, Yohan Dubois, Julia J Bryant, Christophe Pichon, Scott M Croom, Joss Bland-Hawthorn, Sarah Brough, Hoseung Choi, Julien Devriendt, Brent Groves, Matt S Owers, Samuel N Richards, Jesse van de Sande, Sarah M Sweet

Complete census of massive slow rotators in ten large galaxy clusters

(2019)

Authors:

Mark T Graham, Michele Cappellari, Matthew A Bershady, Niv Drory

EDGE: The Origin of Scatter in Ultra-faint Dwarf Stellar Masses and Surface Brightnesses

The Astrophysical Journal American Astronomical Society 886:1 (2019) L3-L3

Authors:

Martin P Rey, Andrew Pontzen, Oscar Agertz, Matthew DA Orkney, Justin I Read, Amélie Saintonge, Christian Pedersen

SIGNALS: I. Survey description

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 489:4 (2019) 5530-5546

Authors:

L Rousseau-Nepton, RP Martin, C Robert, L Drissen, P Amram, S Prunet, T Martin, I Moumen, A Adamo, A Alarie, P Barmby, A Boselli, F Bresolin, M Bureau, L Chemin, RC Fernandes, F Combes, C Crowder, L Della Bruna, S Duarte Puertas, F Egusa, B Epinat, VF Ksoll, M Girard, V Gómez Llanos, D Gouliermis, K Grasha, C Higgs, J Hlavacek-Larrondo, I-T Ho, J Iglesias-Páramo, G Joncas, ZS Kam, P Karera, RC Kennicutt, RS Klessen, S Lianou, L Liu, Q Liu, A Luiz de Amorim, JD Lyman, H Martel, B Mazzilli-Ciraulo, AF McLeod, A-L Melchior, I Millan, M Mollá, R Momose, C Morisset, H-A Pan, AK Pati, A Pellerin, E Pellegrini, I Pérez, A Petric, H Plana, D Rahner, T Ruiz Lara, L Sánchez-Menguiano, K Spekkens, G Stasińska, M Takamiya, N Vale Asari, JM Vílchez

Abstract:

ABSTRACT SIGNALS, the Star formation, Ionized Gas, and Nebular Abundances Legacy Survey, is a large observing programme designed to investigate massive star formation and H ii regions in a sample of local extended galaxies. The programme will use the imaging Fourier transform spectrograph SITELLE at the Canada–France–Hawaii Telescope. Over 355 h (54.7 nights) have been allocated beginning in fall 2018 for eight consecutive semesters. Once completed, SIGNALS will provide a statistically reliable laboratory to investigate massive star formation, including over 50 000 resolved H ii regions: the largest, most complete, and homogeneous data base of spectroscopically and spatially resolved extragalactic H ii regions ever assembled. For each field observed, three datacubes covering the spectral bands of the filters SN1 (363–386 nm), SN2 (482–513 nm), and SN3 (647–685 nm) are gathered. The spectral resolution selected for each spectral band is 1000, 1000, and 5000, respectively. As defined, the project sample will facilitate the study of small-scale nebular physics and many other phenomena linked to star formation at a mean spatial resolution of ∼20 pc. This survey also has considerable legacy value for additional topics, including planetary nebulae, diffuse ionized gas, and supernova remnants. The purpose of this paper is to present a general outlook of the survey, notably the observing strategy, galaxy sample, and science requirements.