Effective spin distribution of black hole mergers in triples

(2019)

Authors:

Giacomo Fragione, Bence Kocsis

The data analysis pipeline for the SDSS-IV MaNGA IFU galaxy survey: Emission-line modeling

Astronomical Journal American Astronomical Society 158:4 (2019) 160

Authors:

Francesco Belfiore, Kyle B Westfall, Adam Schaefer, Michele Cappellari, Et al.

Abstract:

SDSS-IV MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) is the largest integral-field unit (IFU) spectroscopy survey to date, aiming to observe a statistically representative sample of 10,000 low-redshift galaxies. In this paper, we study the reliability of the emission-line fluxes and kinematic properties derived by the MaNGA Data Analysis Pipeline (DAP). We describe the algorithmic choices made in the DAP with regards to measuring emission-line properties, and the effect of our adopted strategy of simultaneously fitting the continuum and line emission. The effects of random errors are quantified by studying various fit-quality metrics, idealized recovery simulations, and repeat observations. This analysis demonstrates that the emission lines are well fit in the vast majority of the MaNGA data set and the derived fluxes and errors are statistically robust. The systematic uncertainty on emission-line properties introduced by the choice of continuum templates is also discussed. In particular, we test the effect of using different stellar libraries and simple stellar-population models on the derived emission-line fluxes and the effect of introducing different tying prescriptions for the emission-line kinematics. We show that these effects can generate large (>0.2 dex) discrepancies at low signal-to-noise ratio and for lines with low equivalent width (EW); however, the combined effect is noticeable even for Hα EW > 6 Å. We provide suggestions for optimal use of the data provided by SDSS data release 15 and propose refinements on the DAP for future MaNGA data releases.

The SAMI Galaxy Survey: First detection of a transition in spin orientation with respect to cosmic filaments in the stellar kinematics of galaxies

(2019)

Authors:

C Welker, J Bland-Hawthorn, J Van de Sande, C Lagos, P Elahi, D Obreschkow, J Bryant, C Pichon, L Cortese, SN Richards, SM Croom, M Goodwin, JS Lawrence, S Sweet, A Lopez-Sanchez, A Medling, MS Owers, Y Dubois, J Devriendt

Making a supermassive star by stellar bombardment

(2019)

Authors:

Hiromichi Tagawa, Zoltan Haiman, Bence Kocsis

ALMACAL – VI. Molecular gas mass density across cosmic time via a blind search for intervening molecular absorbers

Monthly Notices of the Royal Astronomical Society Oxford University Press 490:1 (2019) 1220-1230

Authors:

Anne Klitsch, Celine Peroux, Martin A Zwaan, Ian Smail, Dylan Nelson, Gergo Popping, Chian-Chou Chen, Benedikt Diemer, RJ Ivison, James R Allison, Sebastien Muller, A Mark Swinbank, Aleksandra Hamanowicz, Andrew D Biggs, Rajeshwari Dutta

Abstract:

We are just starting to understand the physical processes driving the dramatic change in cosmic star formation rate between z ∼ 2 and the present day. A quantity directly linked to star formation is the molecular gas density, which should be measured through independent methods to explore variations due to cosmic variance and systematic uncertainties. We use intervening CO absorption lines in the spectra of mm-bright background sources to provide a census of the molecular gas mass density of the Universe. The data used in this work are taken from ALMACAL, a wide and deep survey utilizing the ALMA calibrator archive. While we report multiple Galactic absorption lines and one intrinsic absorber, no extragalactic intervening molecular absorbers are detected. However, due to the large redshift path surveyed (z = 182), we provide constraints on the molecular column density distribution function beyond z ∼ 0. In addition, we probe column densities of N(H2) > 1016 atoms cm−2, 5 orders of magnitude lower than in previous studies. We use the cosmological hydrodynamical simulation IllustrisTNG to show that our upper limits of ρ(H2) 108.3 M Mpc−3 at 0 < z ≤ 1.7 already provide new constraints on current theoretical predictions of the cold molecular phase of the gas. These results are in agreement with recent CO emission-line surveys and are complementary to those studies. The combined constraints indicate that the present decrease of the cosmic star formation rate history is consistent with an increasing depletion of molecular gas in galaxies compared to z ∼ 2.