The SAMI Galaxy Survey: First detection of a transition in spin orientation with respect to cosmic filaments in the stellar kinematics of galaxies

(2019)

Authors:

C Welker, J Bland-Hawthorn, J Van de Sande, C Lagos, P Elahi, D Obreschkow, J Bryant, C Pichon, L Cortese, SN Richards, SM Croom, M Goodwin, JS Lawrence, S Sweet, A Lopez-Sanchez, A Medling, MS Owers, Y Dubois, J Devriendt

Making a supermassive star by stellar bombardment

(2019)

Authors:

Hiromichi Tagawa, Zoltan Haiman, Bence Kocsis

ALMACAL – VI. Molecular gas mass density across cosmic time via a blind search for intervening molecular absorbers

Monthly Notices of the Royal Astronomical Society Oxford University Press 490:1 (2019) 1220-1230

Authors:

Anne Klitsch, Celine Peroux, Martin A Zwaan, Ian Smail, Dylan Nelson, Gergo Popping, Chian-Chou Chen, Benedikt Diemer, RJ Ivison, James R Allison, Sebastien Muller, A Mark Swinbank, Aleksandra Hamanowicz, Andrew D Biggs, Rajeshwari Dutta

Abstract:

We are just starting to understand the physical processes driving the dramatic change in cosmic star formation rate between z ∼ 2 and the present day. A quantity directly linked to star formation is the molecular gas density, which should be measured through independent methods to explore variations due to cosmic variance and systematic uncertainties. We use intervening CO absorption lines in the spectra of mm-bright background sources to provide a census of the molecular gas mass density of the Universe. The data used in this work are taken from ALMACAL, a wide and deep survey utilizing the ALMA calibrator archive. While we report multiple Galactic absorption lines and one intrinsic absorber, no extragalactic intervening molecular absorbers are detected. However, due to the large redshift path surveyed (z = 182), we provide constraints on the molecular column density distribution function beyond z ∼ 0. In addition, we probe column densities of N(H2) > 1016 atoms cm−2, 5 orders of magnitude lower than in previous studies. We use the cosmological hydrodynamical simulation IllustrisTNG to show that our upper limits of ρ(H2) 108.3 M Mpc−3 at 0 < z ≤ 1.7 already provide new constraints on current theoretical predictions of the cold molecular phase of the gas. These results are in agreement with recent CO emission-line surveys and are complementary to those studies. The combined constraints indicate that the present decrease of the cosmic star formation rate history is consistent with an increasing depletion of molecular gas in galaxies compared to z ∼ 2.

Massive spheroids can form in single minor mergers

Monthly Notices of the Royal Astronomical Society Oxford University Press 489:4 (2019) 4679-4689

Authors:

RA Jackson, G Martin, S Kaviraj, C Laigle, Julien Devriendt, Y Dubois, C Pichon

Abstract:

Understanding how rotationally supported discs transform into dispersion-dominated spheroids is central to our comprehension of galaxy evolution. Morphological transformation is largely merger-driven. While major mergers can efficiently create spheroids, recent work has highlighted the significant role of other processes, like minor mergers, in driving morphological change. Given their rich merger histories, spheroids typically exhibit large fractions of ‘ex situ’ stellar mass, i.e. mass that is accreted, via mergers, from external objects. This is particularly true for the most massive galaxies, whose stellar masses typically cannot be attained without a large number of mergers. Here, we explore an unusual population of extremely massive (M* > 1011M) spheroids, in the Horizon-AGN simulation, which exhibit anomalously low ex situ mass fractions, indicating that they form without recourse to significant merging. These systems form in a single minor-merger event (with typical merger mass ratios of 0.11–0.33), with a specific orbital configuration, where the satellite orbit is virtually co-planar with the disc of the massive galaxy. The merger triggers a catastrophic change in morphology, over only a few hundred Myr, coupled with strong in situ star formation. While this channel produces a minority (∼5 per cent) of such galaxies, our study demonstrates that the formation of at least some of the most massive spheroids need not involve major mergers – or any significant merging at all – contrary to what is classically believed.

WISDOM project – V. Resolving molecular gas in Keplerian rotation around the supermassive black hole in NGC 0383

Monthly Notices of the Royal Astronomical Society Oxford University Press 490:1 (2019) 319-330

Authors:

EV North, TA Davis, Martin Bureau, Michele Cappellari, S Iguchi, L Liu, K Onishi, M Sarzi, Smith, TG Williams

Abstract:

As part of the mm-Wave Interferometric Survey of Dark Object Masses (WISDOM), we present a measurement of the mass of the supermassive black hole (SMBH) in the nearby early-type galaxy NGC 0383 (radio source 3C 031). This measurement is based on Atacama Large Millimeter/sub-millimeter Array (ALMA) cycle 4 and 5 observations of the 12CO(2–1) emission line with a spatial resolution of 58 × 32 pc2 (0.18 arcsec × 0.1 arcsec). This resolution, combined with a channel width of 10 km s−1, allows us to well resolve the radius of the black hole sphere of influence (measured as RSOI = 316 pc  =  0.98 arcsec), where we detect a clear Keplerian increase of the rotation velocities. NGC 0383 has a kinematically relaxed, smooth nuclear molecular gas disc with weak ring/spiral features. We forward model the ALMA data cube with the Kinematic Molecular Simulation (KinMS) tool and a Bayesian Markov Chain Monte Carlo method to measure an SMBH mass of (4.2 ± 0.7) × 109 M⊙, a F160W-band stellar mass-to-light ratio that varies from 2.8 ± 0.6 M⊙/L$_{\odot ,\, \mathrm{F160W}}$ in the centre to 2.4 ± 0.3 M⊙$/\rm L_{\odot ,\, \mathrm{F160W}}$ at the outer edge of the disc and a molecular gas velocity dispersion of 8.3 ± 2.1 km s−1(all 3σ uncertainties). We also detect unresolved continuum emission across the full bandwidth, consistent with synchrotron emission from an active galactic nucleus. This work demonstrates that low-J CO emission can resolve gas very close to the SMBH ($\approx 140\, 000$ Schwarzschild radii) and hence that the molecular gas method is highly complimentary to megamaser observations, as it can probe the same emitting material.