A negative stellar mass−gaseous metallicity gradient relation of dwarf galaxies modulated by stellar feedback

Astronomy & Astrophysics EDP Sciences 698 (2025) a208

Authors:

Tie Li, Hong-Xin Zhang, Wenhe Lyu, Yimeng Tang, Yao Yao, Enci Wang, Yu Rong, Guangwen Chen, Xu Kong, Fuyan Bian, Qiusheng Gu, Evelyn J Johnston, Xin Li, Shude Mao, Yong Shi, Junfeng Wang, Xin Wang, Xiaoling Yu, Zhiyuan Zheng

Abstract:

Baryonic cycling is reflected in the spatial distribution of metallicity within galaxies; however, gas-phase metallicity distribution and its connection with other properties of dwarf galaxies are largely unexplored. We present the first systematic study of radial gradients of gas-phase metallicities for a sample of 55 normal nearby star-forming dwarf galaxies (stellar mass M ⋆ ranging from 10 7 to 10 9.5 M ⊙ ) based on MUSE wide-field spectroscopic observations. We find that the metallicity gradient has a significant negative correlation (Spearman’s rank correlation coefficient r ≃ −0.56) with M ⋆ , which is in contrast with the flat or even positive correlation observed for higher-mass galaxies. The negative correlation is accompanied by a stronger central suppression of metallicity compared to the outskirts in lower-mass galaxies. Among the other explored galaxy properties, including baryonic mass, star formation distribution, galaxy environment, regularity of gaseous velocity field, and effective yield of metals y eff , only the regularity of gaseous velocity field and y eff have residual correlation with metallicity gradient after controlling for M ⋆ , in the sense that galaxies with an irregular velocity field or lower y eff favor a less negative or more positive metallicity gradient. Particularly, a linear combination of logarithmic stellar mass and y eff significantly improves the correlation with metallicity gradients ( r ∼ −0.68) compared to using stellar mass alone. The lack of correlation with environment disproves gas accretion as a relevant factor shaping the metallicity distribution. The correlation with both gaseous velocity field regularity and y eff implies the importance of stellar feedback-driven metal redistribution within the ISM. Our finding suggests that the metal mixing and transport process, including but not limited to feedback-driven outflow, are more important than in situ metal production in shaping the metallicity distribution of dwarf galaxies.

Cosmology from LOFAR Two-metre Sky Survey Data Release 2: Counts-in-cells statistics

Astronomy & Astrophysics EDP Sciences 698 (2025) a148

Authors:

Morteza Pashapour-Ahmadabadi, Lukas Böhme, Thilo M Siewert, Dominik J Schwarz, Catherine L Hale, Caroline Heneka, Prabhakar Tiwari, Jinglan Zheng

Cosmology from LOFAR Two-metre Sky Survey Data Release 2: Cross-correlations with luminous red galaxies from eBOSS

Astronomy & Astrophysics EDP Sciences 698 (2025) a58

Authors:

Jinglan Zheng, Prabhakar Tiwari, Gong-Bo Zhao, Dominik J Schwarz, David Bacon, Stefano Camera, Caroline Heneka, Catherine Hale, Szymon J Nakoneczny, Morteza Pashapour-Ahmadabadi

Galaxy size and mass build-up in the first 2 Gyr of cosmic history from multi-wavelength JWST NIRCam imaging

Astronomy & Astrophysics EDP Sciences 698 (2025) a30

Authors:

Natalie Allen, Pascal A Oesch, Sune Toft, Jasleen Matharu, Conor JR McPartland, Andrea Weibel, Gabe Brammer, Rebecca AA Bowler, Kei Ito, Rashmi Gottumukkala, Francesca Rizzo, Francesco Valentino, Rohan G Varadaraj, John R Weaver, Katherine E Whitaker

SYREN-NEW: Precise formulae for the linear and nonlinear matter power spectra with massive neutrinos and dynamical dark energy

Astronomy & Astrophysics EDP Sciences 698 (2025) a1

Authors:

Ce Sui, Deaglan J Bartlett, Shivam Pandey, Harry Desmond, Pedro G Ferreira, Benjamin D Wandelt