JINGLE V: Dust properties of nearby galaxies derived from hierarchical Bayesian SED fitting
Abstract:
Observation of He-like satellite lines of the H-like potassium K XIX emission
Abstract:
We present measurements of the H-like potassium (K xix) X-ray spectrum and its He-like (K xviii) satellite lines, which are situated in the wavelength region between 3.34 and 3.39 Å, which has been of interest for the detection of dark matter. The measurements were taken with a high-resolution X-ray spectrometer from targets irradiated by a long-pulse (2 ns) beam from the Orion laser facility. We obtain experimental wavelength values of dielectronic recombination satellite lines and show that the ratio of the Lyα lines and their dielectronic satellite lines can be used to estimate the electron temperature, which in our case was about 1.5 ± 0.3 keV.Emission from the circumgalactic medium: from cosmological zoom-in simulations to multiwavelength observables
Abstract:
We simulate the flux emitted from galaxy haloes in order to quantify the brightness of the circumgalactic medium (CGM). We use dedicated zoom-in cosmological simulations with the hydrodynamical adaptive mesh refinement code RAMSES, which are evolved down to z = 0 and reach a maximum spatial resolution of 380 h−1 pc and a gas mass resolution up to 1.8×105 h−1 M⊙ in the densest regions. We compute the expected emission from the gas in the CGM using CLOUDY emissivity models for different lines (e.g. Lyα, C IV, O VI, C VI, O VIII) considering UV background fluorescence, gravitational cooling and continuum emission. In the case of Lyα, we additionally consider the scattering of continuum photons. We compare our predictions to current observations and find them to be in good agreement at any redshift after adjusting the Lyα escape fraction. We combine our mock observations with instrument models for Faint Intergalactic Redshifted Emission Balloon-2 (FIREBall-2; UV balloon spectrograph) and HARMONI (visible and NIR IFU on the ELT) to predict CGM observations with either instrument and optimize target selections and observing strategies. Our results show that Lyα emission from the CGM at a redshift of 0.7 will be observable with FIREBall-2 for bright galaxies (NUV∼18 mag), while metal lines like O VI and C IV will remain challenging to detect. HARMONI is found to be well suited to study the CGM at different redshifts with various tracers.