The energetics of starburst-driven outflows at z ∼ 1 from KMOS
Monthly Notices of the Royal Astronomical Society Oxford University Press 487:1 (2019) 381-393
Abstract:
We present an analysis of the gas outflow energetics from KMOS observations of ∼ 529 main-sequence star-forming galaxies at z ∼ 1 using broad, underlying H α and forbidden lines of [N II] and [S II]. Based on the stacked spectra for a sample with median star-formation rates and stellar masses of SFR = 7 M⊙ yr−1 and M⋆ = (1.0 ± 0.1) × 1010 M⊙, respectively, we derive a typical mass outflow rate of M˙wind = 1–4 M⊙ yr−1 and a mass loading of M˙wind / SFR = 0.2–0.4. By comparing the kinetic energy in the wind with the energy released by supernovae, we estimate a coupling efficiency between the star formation and wind energetics of ϵ ∼ 0.03. The mass loading of the wind does not show a strong trend with star-formation rate over the range ∼ 2–20 M⊙ yr−1, although we identify a trend with stellar mass such that dM / dt / SFR ∝ M0.26±0.07⋆. Finally, the line width of the broad H α increases with disc circular velocity with a sub-linear scaling relation FWHMbroad ∝ v0.21 ± 0.05. As a result of this behaviour, in the lowest mass galaxies (M⋆ ≲ 1010 M⊙), a significant fraction of the outflowing gas should have sufficient velocity to escape the gravitational potential of the halo whilst in the highest mass galaxies (M⋆ ≳ 1010 M⊙) most of the gas will be retained, flowing back on to the galaxy disc at later times.New Horizon: On the origin of the stellar disk and spheroid of field galaxies at $z=0.7$
(2019)
Black hole mergers from quadruples
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2019)
Abstract:
With the hundreds of merging binary black hole (BH) signals expected to be detected by LIGO/Virgo, LISA and other instruments in the next few years, the modeling of astrophysical channels that lead to the formation of compact-object binaries has become of fundamental importance. In this paper, we carry out a systematic statistical study of quadruple BHs consisting of two binaries in orbit around their center of mass, by means of high-precision direct $N$-body simulations including Post-Newtonian (PN) terms up to 2.5PN order. We found that most merging systems have high initial inclinations and the distributions peak at $\sim 90^\circ$ as for triples, but with a more prominent broad distribution tail. We show that BHs merging through this channel have a significant eccentricity in the LIGO band, typically much larger than BHs merging in isolated binaries and in binaries ejected from star clusters, but comparable to that of merging binaries formed via the GW capture scenario in clusters, mergers in hierarchical triples, or BH binaries orbiting intermediate-mass black holes in star clusters. We show that the merger fraction can be up to $\sim 3$--$4\times$ higher for quadruples than for triples. Thus even if the number of quadruples is $20\%$--$25\%$ of the number of triples, the quadruple scenario can represent an important contribution to the events observed by LIGO/VIRGO.Optical integral field spectroscopy of intermediate redshift infrared bright galaxies
Monthly Notices of the Royal Astronomical Societ Oxford University Press 486:4 (2019) 5621-5645
Abstract:
The extreme infrared (IR) luminosity of local luminous and ultraluminous IR galaxies (U/LIRGs; 11 < logLIR/L < 12 and logLIR/L > 12, respectively) is mainly powered by star formation processes triggered by mergers or interactions. While U/LIRGs are rare locally, at z > 1, they become more common, dominate the star formation rate (SFR) density, and a fraction of them are found to be normal disc galaxies. Therefore, there must be an evolution of the mechanism triggering these intense starbursts with redshift. To investigate this evolution, we present new optical SWIFT integral field spectroscopic H α + [N II] observations of a sample of nine intermediate-z (0.2Transforming education with the Timepix detector - Ten years of CERN@school
Radiation Measurements Elsevier BV (2019) 106090