The Obelisk simulation: galaxies contribute more than AGN to HI reionization of protoclusters

(2020)

Authors:

Maxime Trebitsch, Yohan Dubois, Marta Volonteri, Hugo Pfister, Corentin Cadiou, Harley Katz, Joakim Rosdahl, Taysun Kimm, Christophe Pichon, Ricarda S Beckmann, Julien Devriendt, Adrianne Slyz

Abstract:

We present the Obelisk project, a cosmological radiation-hydrodynamics simulation following the assembly and reionization of a protocluster progenitor during the first two billions of years from the big bang, down to z = 3.5. The simulation resolves haloes down to the atomic cooling limit, and tracks the contribution of different sources of ionization: stars, active galactic nuclei, and collisions. The Obelisk project is designed specifically to study the coevolution of high redshift galaxies and quasars in an environment favouring black hole growth. In this paper, we establish the relative contribution of these two sources of radiation to reionization and their respective role in establishing and maintaining the high redshift ionizing background. Our volume is typical of an overdense region of the Universe and displays star formation rate and black hole accretion rate densities similar to high redshift protoclusters. We find that hydrogen reionization happens inside-out and is completed by z ∼ 6 in our overdensity, and is predominantly driven by galaxies, while accreting black holes only play a role at z ∼ 4.

The Obelisk simulation: galaxies contribute more than AGN to HI reionization of protoclusters

(2020)

Authors:

Maxime Trebitsch, Yohan Dubois, Marta Volonteri, Hugo Pfister, Corentin Cadiou, Harley Katz, Joakim Rosdahl, Taysun Kimm, Christophe Pichon, Ricarda S Beckmann, Julien Devriendt, Adrianne Slyz

Deceptively cold dust in the massive starburst galaxy GN20 at $z\sim4$

(2020)

Authors:

Isabella Cortzen, Georgios E Magdis, Francesco Valentino, Emanuele Daddi, Daizhong Liu, Dimitra Rigopoulou, Mark Sargent, Dominik Riechers, Diane Cormier, Jacqueline A Hodge, Fabian Walter, David Elbaz, Matthieu Béthermin, Thomas R Greve, Vasily Kokorev, Sune Toft

The role of galaxy mass on AGN emission: a view from the VANDELS survey

ArXiv 2002.0298 (2020)

Authors:

M Magliocchetti, L Pentericci, M Cirasuolo, G Zamorani, R Amorin, A Bongiorno, A Cimatti, A Fontana, B Garilli, A Gargiulo, NP Hathi, DJ McLeod, RJ McLure, M Brusa, A Saxena, M Talia

Radio and X-ray detections of GX 339-4 in quiescence using MeerKAT and Swift

Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press 493:1 (2020) L132-L137

Authors:

E Tremou, S Corbel, Rp Fender, Pa Woudt, Jca Miller-Jones, Sara Motta, I Heywood, Robert Armstrong, P Groot, A Horesh, Aj Van Der Horst, E Koerding, Kunal Mooley, A Rowlinson, Ramj Wijers

Abstract:

The radio-X-ray correlation that characterizes accreting black holes at all mass scales - from stellar mass black holes in binary systems to supermassive black holes powering active galactic nuclei - is one of the most important pieces of observational evidence supporting the existence of a connection between the accretion process and the generation of collimated outflows - or jets - in accreting systems. Although recent studies suggest that the correlation extends down to low luminosities, only a handful of stellar mass black holes have been clearly detected, and in general only upper limits (especially at radio wavelengths) can be obtained during quiescence. We recently obtained detections of the black hole X-ray binary (XRB) GX 339-4 in quiescence using the Meer Karoo Array Telescope (MeerKAT) radio telescope and Swift X-ray Telescope instrument on board the Neil Gehrels Swift Observatory, probing the lower end of the radio-X-ray correlation. We present the properties of accretion and of the connected generation of jets in the poorly studied low-accretion rate regime for this canonical black hole XRB system.