Improved dynamical constraints on the masses of the central black holes in nearby low-mass early-type galactic nuclei and the first black hole determination for NGC 205
Astrophysical Journal American Astronomical Society 872:1 (2019) 104
Abstract:
We improve the dynamical black hole (BH) mass estimates in three nearby low-mass early-type galaxies: NGC 205, NGC 5102, and NGC 5206. We use new Hubble Space Telescope (HST)/STIS spectroscopy to fit the star formation histories of the nuclei in these galaxies, and use these measurements to create local color–mass-to-light ratio (M/L) relations. We then create new mass models from HST imaging and combined with adaptive optics kinematics, we use Jeans dynamical models to constrain their BH masses. The masses of the central BHs in NGC 5102 and NGC 5206 are both below one million solar masses and are consistent with our previous estimates, ${9.12}_{-1.53}^{+1.84}\times {10}^{5}$ M ⊙ and ${6.31}_{-2.74}^{+1.06}\times {10}^{5}$ M ⊙ (3σ errors), respectively. However, for NGC 205, the improved models suggest the presence of a BH for the first time, with a best-fit mass of ${6.8}_{-6.7}^{+95.6}\times {10}^{3}$ M ⊙ (3σ errors). This is the least massive central BH mass in a galaxy detected using any method. We discuss the possible systematic errors of this measurement in detail. Using this BH mass, the existing upper limits of both X-ray, and radio emissions in the nucleus of NGC 205 suggest an accretion rate lesssim10−5 of the Eddington rate. We also discuss the color–M/L eff relations in our nuclei and find that the slopes of these vary significantly between nuclei. Nuclei with significant young stellar populations have steeper color–M/L eff relations than some previously published galaxy color–M/L eff relations.The shapes of the rotation curves of star-forming galaxies over the last ≈10 Gyr
Monthly Notices of the Royal Astronomical Society Oxford University Press 485:1 (2019) 934-960
Abstract:
We analyse maps of the spatially resolved nebular emission of ≈1500 star-forming galaxies at z ≈ 0.6–2.2 from deep K-band Multi-Object Spectrograph and MUSE observations to measure the average shape of their rotation curves. We use these to test claims for declining rotation curves at large radii in galaxies at z ≈ 1–2 that have been interpreted as evidence for an absence of dark matter. We show that the shape of the average rotation curves, and the extent to which they decline beyond their peak velocities, depends upon the normalization prescription used to construct the average curve. Normalizing in size by the galaxy stellar disc-scale length after accounting for seeing effects (R d), we construct stacked position-velocity diagrams that trace the average galaxy rotation curve out to 6R d (≈13 kpc, on average). Combining these curves with average H I rotation curves for local systems, we investigate how the shapes of galaxy rotation curves evolve over ≈10 Gyr. The average rotation curve for galaxies binned in stellar mass, stellar surface mass density and/or redshift is approximately flat, or continues to rise, out to at least 6R d. We find a trend between the outer slopes of galaxies’ rotation curves and their stellar mass surface densities, with the higher surface density systems exhibiting flatter rotation curves. Drawing comparisons with hydrodynamical simulations, we show that the average shapes of the rotation curves for our sample of massive, star-forming galaxies at z ≈ 0–2.2 are consistent with those expected from lambda cold dark matter theory and imply dark matter fractions within 6Rd of at least ≈60 per cent.The formation and evolution of low-surface-brightness galaxies
(2019)
Recovering stellar population parameters via different population models and stellar libraries
Monthly Notices of the Royal Astronomical Society Oxford University Press 485:2 (2019) 1675-1693
Abstract:
Three basic ingredients are required to generate a simple stellar population (SSP) library, i.e. an initial mass function (IMF), a stellar evolution model/isochrones, and an empirical/theoretical stellar spectral library. However, there are still some uncertainties to the determination and understanding of these ingredients. We perform the spectral fitting to test the relative parameter offsets between these uncertainties using two different stellar population models, two different empirical stellar libraries, two different isochrones, and the Salpeter and Chabrier IMFs. Based on these setups, we select five SSP libraries generated with the Galaxev/STELIB and Vazdekis/MILES models, and apply them to the pPXF full-spectrum fitting of both MaNGA and mock spectra. We find that: (1) Compared to the Galaxev/STELIB model, spectral fitting qualities with the Vazdekis/MILES model have significant improvements for those metal-rich (especially oversolar) spectra, which cause better reduced χ 2 distributions and more precisely fitted absorption lines. This might due to the lack of metal-rich stars in the empirical STELIB library, or code improvement of the Vazdekis model. (2) When applying the Vazdekis/MILES model for spectral fitting, the IMF variation will lead to not only a systematic offset in M ∗ /L r , but also offsets in age and metallicity, and these offsets increase with increasing stellar population ages. However, the IMF variation caused metallicity offsets disappear in the case of Galaxev/STELIB based libraries. (3) The Padova2000 model provides a better match to the MaNGA galaxy spectra at [M/H] L < −1.0, while the BaSTI model match the local galaxy spectra better at [M/H] L > −1.0. Current tests suggest that spectral fitting with the Vazdekis/MILES + BaSTI combination would be a better choice for local galaxies.Recovering stellar population parameters via different population models and stellar libraries
(2019)