Torus model properties of an ultra-hard X-ray selected sample of Seyfert galaxies
Monthly Notices of the Royal Astronomical Society Oxford University Press 486:4 (2019) 4917-4935
Abstract:
We characterize for the first time the torus properties of an ultra-hard X-ray (14–195 keV) volume-limited (DL < 40 Mpc) sample of 24 Seyfert (Sy) galaxies (BCS40 sample). The sample was selected from the Swift/BAT nine-month catalogue. We use high angular resolution nuclear infrared (IR) photometry and N-band spectroscopy, the CLUMPY torus models and a Bayesian tool to characterize the properties of the nuclear dust. In the case of the Sy1s, we estimate the accretion disc contribution to the subarcsecond resolution nuclear IR SEDs (∼0.4 arcsec) which is, on average, 46 ± 28, 23 ± 13, and 11 ± 5 per cent in the J, H, and K bands, respectively. This indicates that the accretion disc templates that assume a steep fall for longer wavelengths than 1 μm might underestimate its contribution to the near-IR emission. Using both optical (broad versus narrow lines) and X-ray (unabsorbed versus absorbed) classifications, we compare the global posterior distribution of the torus model parameters. We confirm that Sy2s have larger values of the torus covering factor (CT ∼ 0.95) than Sy1s (CT ∼ 0.65) in our volume-limited Seyfert sample. These findings are independent of whether we use an optical or X-ray classification. We find that the torus covering factor remains essentially constant within the errors in our luminosity range and there is no clear dependence with the Eddington ratio. Finally, we find tentative evidence that even an ultra-hard X-ray selection is missing a significant fraction of highly absorbed type 2 sources with very high covering factor tori.Review: Far-infrared instrumentation and technological development for the next decade
Journal of Astronomical Telescopes, Instruments, and Systems 5:2 (2019)
Abstract:
© Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Far-infrared astronomy has advanced rapidly since its inception in the late 1950s, driven by a maturing technology base and an expanding community of researchers. This advancement has shown that observations at far-infrared wavelengths are important in nearly all areas of astrophysics, from the search for habitable planets and the origin of life to the earliest stages of galaxy assembly in the first few hundred million years of cosmic history. The combination of a still-developing portfolio of technologies, particularly in the field of detectors, and a widening ensemble of platforms within which these technologies can be deployed, means that farinfrared astronomy holds the potential for paradigm-shifting advances over the next decade. We examine the current and future far-infrared observing platforms, including ground-based, suborbital, and space-based facilities, and discuss the technology development pathways that will enable and enhance these platforms to best address the challenges facing far-infrared astronomy in the 21st century.What do astronomers want from the STFC?
Astronomy and Geophysics Oxford University Press 60:2 (2019) 2.13-2.17
Abstract:
Stephen Serjeant and the STFC's Astronomy Advisory Panel summarize community responses to its consultation on research priorities, undertaken in November 2018.Catalog of quasars from the Kilo-Degree Survey Data Release 3⋆⋆⋆
Astronomy & Astrophysics EDP Sciences 624 (2019) a13
Optical detection of a GMRT-detected candidate high-redshift radio galaxy with 3.6-m Devasthal optical telescope
Journal of Astrophysics and Astronomy Springer Nature 40:2 (2019) 9