The JWST Extragalactic Mock Catalog: Modeling galaxy populations from the UV through the near-IR over thirteen billion years of cosmic history

(2018)

Authors:

Christina C Williams, Emma Curtis-Lake, Kevin N Hainline, Jacopo Chevallard, Brant E Robertson, Stephane Charlot, Ryan Endsley, Daniel P Stark, Christopher NA Willmer, Stacey Alberts, Ricardo Amorin, Santiago Arribas, Stefi Baum, Andrew Bunker, Stefano Carniani, Sara Crandall, Eiichi Egami, Daniel J Eisenstein, Pierre Ferruit, Bernd Husemann, Michael V Maseda, Roberto Maiolino, Timothy D Rawle, Marcia Rieke, Renske Smit, Sandro Tacchella, Chris J Willott

Shape of LOSVDs in barred disks: implications for future IFU surveys

Astrophysical Journal IOP Publishing 854:1 (2018) 65

Authors:

Z-Y Li, J Shen, Martin Bureau, Y Zhou, M Du, VP Debattista

Abstract:

The shape of LOSVDs (line-of-sight velocity distributions) carries important information about the internal dynamics of galaxies. The skewness of LOSVDs represents their asymmetric deviation from a Gaussian profile. Correlations between the skewness parameter ($h_3$) and the mean velocity ($\vm$) of a Gauss-Hermite series reflect the underlying stellar orbital configurations of different morphological components. Using two self-consistent $N$-body simulations of disk galaxies with different bar strengths, we investigate $h_3-\vm$ correlations at different inclination angles. Similar to previous studies, we find anticorrelations in the disk area, and positive correlations in the bar area when viewed edge-on. However, at intermediate inclinations, the outer parts of bars exhibit anticorrelations, while the core areas dominated by the boxy/peanut-shaped (B/PS) bulges still maintain weak positive correlations. When viewed edge-on, particles in the foreground/background disk (the wing region) in the bar area constitute the main velocity peak, whereas the particles in the bar contribute to the high-velocity tail, generating the $h_3-\vm$ correlation. If we remove the wing particles, the LOSVDs of the particles in the outer part of the bar only exhibit a low-velocity tail, resulting in a negative $h_3-\vm$ correlation, whereas the core areas in the central region still show weakly positive correlations. We discuss implications for IFU observations on bars, and show that the variation of the $h_3-\vm$ correlation in the disk galaxy may be used as a kinematic indicator of the bar and the B/PS bulge.

Quadratic genetic modifications: a streamlined route to cosmological simulations with controlled merger history

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 474:1 (2018) 45-54

Authors:

Martin P Rey, Andrew Pontzen

Hidden Universality in the Merger Rate Distribution in the Primordial Black Hole Scenario

ASTROPHYSICAL JOURNAL American Astronomical Society 854:1 (2018) ARTN 41

Authors:

Bence Kocsis, Teruaki Suyama, Takahiro Tanaka, Shuichiro Yokoyama

Abstract:

It has been proposed that primordial black holes (PBHs) form binaries in the radiation dominated era. Once formed, some fraction of them may merge within the age of the Universe by gravitational radiation reaction. We investigate the merger rate of the PBH binaries when the PBHs have a distribution of masses around ${\cal O}(10) M_\odot$, which is a generalization of the previous studies where the PBHs are assumed to have the same mass. After deriving a formula for the merger time probability distribution in the PBH mass plane, we evaluate it under two different approximations. We identify a quantity constructed from the mass-distribution of the merger rate density per unit cosmic time and comoving volume $\mathcal{R}(m_1,m_2)$, $\alpha = -{(m_1+m_2)}^2\partial^2 \ln\mathcal{R}/\partial m_1\partial m_2 $, which universally satisfies $0.97 \lesssim \alpha \lesssim 1.05$ for all binary masses independently of the PBH mass function. This result suggests that the measurement of this quantity is useful for testing the PBH scenario.

Normal black holes in bulge-less galaxies: the largely quiescent, merger-free growth of black holes over cosmic time

Monthly Notices of the Royal Astronomical Society Oxford University Press 476:2 (2018) 2801-2812

Authors:

G Martin, S Kaviraj, M Volonteri, BD Simmons, Julien EG Devriendt, Christopher Lintott, RJ Smethurst, Y Dubois, C Pichon

Abstract:

Understanding the processes that drive the formation of black holes (BHs) is a key topic in observational cosmology. While the observed $M_{\mathrm{BH}}$--$M_{\mathrm{Bulge}}$ correlation in bulge-dominated galaxies is thought to be produced by major mergers, the existence of a $M_{\mathrm{BH}}$--$M_{\star}$ relation, across all galaxy morphological types, suggests that BHs may be largely built by secular processes. Recent evidence that bulge-less galaxies, which are unlikely to have had significant mergers, are offset from the $M_{\mathrm{BH}}$--$M_{\mathrm{Bulge}}$ relation, but lie on the $M_{\mathrm{BH}}$--$M_{\star}$ relation, has strengthened this hypothesis. Nevertheless, the small size and heterogeneity of current datasets, coupled with the difficulty in measuring precise BH masses, makes it challenging to address this issue using empirical studies alone. Here, we use Horizon-AGN, a cosmological hydrodynamical simulation to probe the role of mergers in BH growth over cosmic time. We show that (1) as suggested by observations, simulated bulge-less galaxies lie offset from the main $M_{\mathrm{BH}}$--$M_{\mathrm{Bulge}}$ relation, but on the $M_{\mathrm{BH}}$--$M_{\star}$ relation, (2) the positions of galaxies on the $M_{\mathrm{BH}}$--$M_{\star}$ relation are not affected by their merger histories and (3) only $\sim$35 per cent of the BH mass in today's massive galaxies is directly attributable to merging -- the majority ($\sim$65 per cent) of BH growth, therefore, takes place gradually, via secular processes, over cosmic time.