The impact of baryons on the matter power spectrum from the Horizon-AGN cosmological hydrodynamical simulation

(2018)

Authors:

Nora Elisa Chisari, Mark LA Richardson, Julien Devriendt, Yohan Dubois, Aurel Schneider, Amandine MC Le Brun, Ricarda S Beckmann, Sebastien Peirani, Adrianne Slyz, Christophe Pichon

LOFAR-Boötes: Properties of high- and low-excitation radio galaxies at $0.5 < z < 2.0$

Monthly Notices of the Royal Astronomical Society Oxford University Press 475:3 (2018) 3429-3452

Authors:

WL Williams, GC Rivera, PN Best, MJ Hardcastle, HJA Röttgering, KJ Duncan, FD Gasperin, Matthew Jarvis, GK Miley, EK Mahony, Leah Morabito, DM Nisbet, I Prandoni, DJB Smith, C Tasse, GJ White

Abstract:

This paper presents a study of the redshift evolution of radio-loud active galactic nuclei (AGN) as a function of the properties of their galaxy hosts in the Bo\"otes field. To achieve this we match low-frequency radio sources from deep $150$-MHz LOFAR observations to an $I$-band-selected catalogue of galaxies, for which we have derived photometric redshifts, stellar masses and rest-frame colours. We present spectral energy distribution (SED) fitting to determine the mid-infrared AGN contribution for the radio sources and use this information to classify them as High- versus Low-Excitation Radio Galaxies (HERGs and LERGs) or Star-Forming galaxies. Based on these classifications we construct luminosity functions for the separate redshift ranges going out to $z = 2$. From the matched radio-optical catalogues, we select a sub-sample of $624$ high power ($P_{150\mathrm{\,MHz}}>10^{25}$ W Hz$^{-1}$) radio sources between $0.5 \leq z < 2$. For this sample, we study the fraction of galaxies hosting HERGs and LERGs as a function of stellar mass and host galaxy colour. The fraction of HERGs increases with redshift, as does the fraction of sources in galaxies with lower stellar masses. We find that the fraction of galaxies that host LERGs is a strong function of stellar mass as it is in the local Universe. This, combined with the strong negative evolution of the LERG luminosity functions over this redshift range, is consistent with LERGs being fuelled by hot gas in quiescent galaxies.

A search for faint high-redshift radio galaxy candidates at 150 MHz

ArXiv 1801.05281 (2018)

Authors:

A Saxena, P Jagannathan, HJA Röttgering, PN Best, HT Intema, M Zhang, KJ Duncan, CL Carilli, GK Miley

LOFAR/H-ATLAS: the low-frequency radio luminosity–star formation rate relation

Monthly Notices of the Royal Astronomical Society Oxford University Press 475:3 (2018) 3010-3028

Authors:

G Gürkan, MJ Hardcastle, DJB Smith, PN Best, N Bourne, G Calistro-Rivera, G Heald, Matthew Jarvis, I Prandoni, HJA Röttgering, J Sabater, T Shimwell, C Tasse, WL Williams

Abstract:

Radio emission is a key indicator of star formation activity in galaxies, but the radio luminosity–star formation relation has to date been studied almost exclusively at frequencies of 1.4 GHz or above. At lower radio frequencies, the effects of thermal radio emission are greatly reduced, and so we would expect the radio emission observed to be completely dominated by synchrotron radiation from supernova-generated cosmic rays. As part of the LOFAR Surveys Key Science project, the Herschel-ATLAS NGP field has been surveyed with LOFAR at an effective frequency of 150 MHz. We select a sample from the MPA-JHU catalogue of Sloan Digital Sky Survey galaxies in this area: the combination of Herschel, optical and mid-infrared data enable us to derive star formation rates (SFRs) for our sources using spectral energy distribution fitting, allowing a detailed study of the low-frequency radio luminosity–star formation relation in the nearby Universe. For those objects selected as star-forming galaxies (SFGs) using optical emission line diagnostics, we find a tight relationship between the 150 MHz radio luminosity (L150) and SFR. Interestingly, we find that a single power-law relationship between L150 and SFR is not a good description of all SFGs: a broken power-law model provides a better fit. This may indicate an additional mechanism for the generation of radio-emitting cosmic rays. Also, at given SFR, the radio luminosity depends on the stellar mass of the galaxy. Objects that were not classified as SFGs have higher 150-MHz radio luminosity than would be expected given their SFR, implying an important role for low-level active galactic nucleus activity.

Diffusion and mixing in globular clusters

(2018)

Authors:

Yohai Meiron, Bence Kocsis