Physical properties and H-ionizing-photon production rates of extreme nearby star-forming regions
ArXiv 1709.03503 (2017)
Abstract:
Measurements of the galaxy UV luminosity function at z>6 suggest that young stars hosted in low-mass star-forming galaxies produced the bulk of hydrogen-ionizing photons necessary to reionize the intergalactic medium (IGM) by redshift z~6. Whether star-forming galaxies dominated cosmic reionization, however, also depends on their stellar populations and interstellar medium properties, which set, among other things, the production rate of H-ionizing photons, $\xi_\text{ion}^\star$, and the fraction of these escaping into the IGM. Given the difficulty of constraining with existing observatories the physical properties of z>6 galaxies, in this work we focus on a sample of ten nearby objects showing UV spectral features comparable to those observed at z>6. We use the new-generation Beagle tool to model the UV-to-optical photometry and UV/optical emission lines of these Local 'analogues' of high-redshift galaxies, finding that our relatively simple, yet fully self-consistent, physical model can successfully reproduce the different observables considered. Our galaxies span a broad range of metallicities and are characterised by high ionization parameters, low dust attenuation, and very young stellar populations. Through our analysis, we derive a novel diagnostic of the production rate of H-ionizing photons per unit UV luminosity, $\xi_\text{ion}^\star$, based on the equivalent width of the bright $[\text{OIII}] \lambda 4959,5007$ doublet, which does not require measurements of H-recombination lines. This new diagnostic can be used to estimate $\xi_\text{ion}^\star$ from future direct measurements of the $[\text{OIII}] \lambda 4959,5007$ line using JWST/NIRSpec (out to z~9.5), and by exploiting the contamination by $\text{H}\beta + [\text{OIII}] \lambda 4959,5007$ of photometric observations of distant galaxies, for instance from existing Spitzer/IRAC data and from future ones with JWST/NIRCam.Gamma-ray and X-ray emission from the Galactic Centre: hints on the nuclear star cluster formation history
(2017)
The KMOS Cluster Survey (KCS). I. The fundamental plane and the formation ages of cluster galaxies at redshift 1.4 < Z < 1.6
Astrophysical Journal American Astronomical Society 846:2 (2017) 1-25
Abstract:
The American Astronomical Society. All rights reserved. We present the analysis of the fundamental plane (FP) for a sample of 19 massive red-sequence galaxies (M· > ×4 10 10 M·) in three known overdensities at 1.39 1.61 < < z from the K-band Multi-object Spectrograph (KMOS) Cluster Survey, a guaranteed-time program with spectroscopy from the KMOS at the VLT and imaging from the Hubble Space Telescope. As expected, we find that the FP zero-point in B band evolves with redshift, from the value 0.443 of Coma to -0.10±0.09, -0.19±0.05, and -0.29±0.12 for our clusters at z = 1.39, z = 1.46, and z = 1.61, respectively. For the most massive galaxies (log 1 M M· > 1) in our sample, we translate the FP zero-point evolution into a mass-to-light-ratio M/L evolution, finding D log 0.46 0.10 M L z B = - (D log )0.52 0.07 M L z B = -to(D log ) 0.55 0.10 M L z B = - respectively. We assess the potential contribution of the galaxy structural and stellar velocity dispersion evolution to the evolution of the FP zero-point and find it to be ∼6%-35% of the FP zero-point evolution. The rate of M/L evolution is consistent with galaxies evolving passively. Using single stellar population models, we find an average age of 2.33- +0.51 0.86 Gyr for the log 1 M M· > 1 galaxies in our massive and virialized cluster at z = 1.39,1.59- +0.62 1.40 Gyr in a massive but not virialized cluster at z = 1.46, and 1.20- +0.47 1.03 Gyr in a protocluster at z = 1.61. After accounting for the difference in the age of the universe between redshifts, the ages of the galaxies in the three overdensities are consistent within the errors, with possibly a weak suggestion that galaxies in the most evolved structure are older.Review: Far-Infrared Instrumentation and Technology Development for the Next Decade
(2017)
Cosmic ray acceleration by relativistic shocks: Limits and estimates
Monthly Notices of the Royal Astronomical Society Oxford University Press (2017)