WISDOM Project - III: Molecular gas measurement of the supermassive black hole mass in the barred lenticular galaxy NGC4429

(2017)

Authors:

Timothy A Davis, Martin Bureau, Kyoko Onishi, Freeke van de Voort, Michele Cappellari, Satoru Iguchi, Lijie Liu, Eve V North, Marc Sarzi, Mark D Smith

Galaxy Zoo: Secular evolution of barred galaxies from structural decomposition of multi-band images

Monthly Notices of the Royal Astronomical Society Oxford University Press 473:4 (2017) 4731-4753

Authors:

Sandor J Kruk, Christopher Lintott, SP Bamford, KL Masters, Brooke D Simmons, B Häußler, CN Cardamone, RE Hart, L Kelvin, K Schawinski, Rebecca J Smethurst, M Vika

Abstract:

We present the results of two-component (disc+bar) and three-component (disc+bar+bulge) multiwavelength 2D photometric decompositions of barred galaxies in five SDSS bands ($ugriz$). This sample of $\sim$3,500 nearby ($z<0.06$) galaxies with strong bars selected from the Galaxy Zoo citizen science project is the largest sample of barred galaxies to be studied using photometric decompositions which include a bar component. With detailed structural analysis we obtain physical quantities such as the bar- and bulge-to-total luminosity ratios, effective radii, S\'ersic indices and colours of the individual components. We observe a clear difference in the colours of the components, the discs being bluer than the bars and bulges. An overwhelming fraction of bulge components have S\'ersic indices consistent with being pseudobulges. By comparing the barred galaxies with a mass-matched and volume-limited sample of unbarred galaxies, we examine the connection between the presence of a large-scale galactic bar and the properties of discs and bulges. We find that the discs of unbarred galaxies are significantly bluer compared to the discs of barred galaxies, while there is no significant difference in the colours of the bulges. We find possible evidence of secular evolution via bars that leads to the build-up of pseudobulges and to the quenching of star formation in the discs. We identify a subsample of unbarred galaxies with an inner lens/oval and find that their properties are similar to barred galaxies, consistent with an evolutionary scenario in which bars dissolve into lenses. This scenario deserves further investigation through both theoretical and observational work.

H0LiCOW – II. Spectroscopic survey and galaxy-group identification of the strong gravitational lens system HE 0435−1223

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 470:4 (2017) 4838-4857

Authors:

D Sluse, A Sonnenfeld, N Rumbaugh, CE Rusu, CD Fassnacht, T Treu, SH Suyu, KC Wong, MW Auger, V Bonvin, T Collett, F Courbin, S Hilbert, LVE Koopmans, PJ Marshall, G Meylan, C Spiniello, M Tewes

Multi-messenger observations of a binary neutron star merger

Astrophysical Journal Letters Institute of Physics 848:2 (2017) L12

Authors:

BP Abbott, R Abbott, TD Abbott, Robert P Fender, Kunal P Mooley, Philipp Podsiadlowski, Subir Sarkar, Adam J Stewart

Abstract:

On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼1.7s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40+8−8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M⊙. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼40Mpc) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼9 and ∼16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.

On the maximum energy of non-thermal particles in the primary hotspot of Cygnus A

Monthly Notices of the Royal Astronomical Society Oxford University Press 473:3 (2017) 3500-3506

Authors:

AT Araudo, AR Bell, Katherine M Blundell, James H Matthews

Abstract:

We study particle acceleration and magnetic field amplification in the primary hotspot in the northwest jet of radiogalaxy Cygnus A. By using the observed flux density at 43 GHz in a well resolved region of this hotspot, we determine the minimum value of the jet density and constrain the magnitude of the magnetic field. We find that a jet with density greater than $5\times 10^{-5}$ cm$^{-3}$ and hotspot magnetic field in the range 50-400 $\mu$G are required to explain the synchrotron emission at 43 GHz. The upper-energy cut-off in the hotspot synchrotron spectrum is at a frequency < $5\times 10^{14}$ Hz, indicating that the maximum energy of non-thermal electrons accelerated at the jet reverse shock is $E_{e, \rm max} \sim 0.8$ TeV in a magnetic field of 100 $\mu$G. Based on the condition that the magnetic-turbulence scale length has to be larger than the plasma skin depth, and that the energy density in non-thermal particles cannot violate the limit imposed by the jet kinetic luminosity, we show that $E_{e,\rm max}$ cannot be constrained by synchrotron losses as traditionally assumed. In addition to that, and assuming that the shock is quasi-perpendicular, we show that non-resonant hybrid instabilities generated by the streaming of cosmic rays with energy $E_{e, \rm max}$ can grow fast enough to amplify the jet magnetic field up to 50-400 $\mu$G and accelerate particles up to the maximum energy $E_{e, \rm max}$ observed in the Cygnus A primary hotspot.