Quadratic genetic modifications: a streamlined route to cosmological simulations with controlled merger history
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 474:1 (2018) 45-54
Hidden Universality in the Merger Rate Distribution in the Primordial Black Hole Scenario
ASTROPHYSICAL JOURNAL American Astronomical Society 854:1 (2018) ARTN 41
Abstract:
It has been proposed that primordial black holes (PBHs) form binaries in the radiation dominated era. Once formed, some fraction of them may merge within the age of the Universe by gravitational radiation reaction. We investigate the merger rate of the PBH binaries when the PBHs have a distribution of masses around ${\cal O}(10) M_\odot$, which is a generalization of the previous studies where the PBHs are assumed to have the same mass. After deriving a formula for the merger time probability distribution in the PBH mass plane, we evaluate it under two different approximations. We identify a quantity constructed from the mass-distribution of the merger rate density per unit cosmic time and comoving volume $\mathcal{R}(m_1,m_2)$, $\alpha = -{(m_1+m_2)}^2\partial^2 \ln\mathcal{R}/\partial m_1\partial m_2 $, which universally satisfies $0.97 \lesssim \alpha \lesssim 1.05$ for all binary masses independently of the PBH mass function. This result suggests that the measurement of this quantity is useful for testing the PBH scenario.Normal black holes in bulge-less galaxies: the largely quiescent, merger-free growth of black holes over cosmic time
Monthly Notices of the Royal Astronomical Society Oxford University Press 476:2 (2018) 2801-2812
Abstract:
Understanding the processes that drive the formation of black holes (BHs) is a key topic in observational cosmology. While the observed $M_{\mathrm{BH}}$--$M_{\mathrm{Bulge}}$ correlation in bulge-dominated galaxies is thought to be produced by major mergers, the existence of a $M_{\mathrm{BH}}$--$M_{\star}$ relation, across all galaxy morphological types, suggests that BHs may be largely built by secular processes. Recent evidence that bulge-less galaxies, which are unlikely to have had significant mergers, are offset from the $M_{\mathrm{BH}}$--$M_{\mathrm{Bulge}}$ relation, but lie on the $M_{\mathrm{BH}}$--$M_{\star}$ relation, has strengthened this hypothesis. Nevertheless, the small size and heterogeneity of current datasets, coupled with the difficulty in measuring precise BH masses, makes it challenging to address this issue using empirical studies alone. Here, we use Horizon-AGN, a cosmological hydrodynamical simulation to probe the role of mergers in BH growth over cosmic time. We show that (1) as suggested by observations, simulated bulge-less galaxies lie offset from the main $M_{\mathrm{BH}}$--$M_{\mathrm{Bulge}}$ relation, but on the $M_{\mathrm{BH}}$--$M_{\star}$ relation, (2) the positions of galaxies on the $M_{\mathrm{BH}}$--$M_{\star}$ relation are not affected by their merger histories and (3) only $\sim$35 per cent of the BH mass in today's massive galaxies is directly attributable to merging -- the majority ($\sim$65 per cent) of BH growth, therefore, takes place gradually, via secular processes, over cosmic time.SDSS-IV MaNGA: Global stellar population and gradients for about 2000 early-type and spiral galaxies on the mass-size plane
Monthly Notices of the Royal Astronomical Society Oxford University Press 476:2 (2018) 1765-1775
Abstract:
We perform full spectrum fitting stellar population analysis and Jeans Anisotropic modelling (JAM) of the stellar kinematics for about 2000 early-type galaxies (ETGs) and spiral galaxies from the MaNGA DR14 sample. Galaxies with different morphologies are found to be located on a remarkably tight mass plane which is close to the prediction of the virial theorem, extending previous results for ETGs. By examining an inclined projection (‘the mass-size’ plane), we find that spiral and early-type galaxies occupy different regions on the plane, and their stellar population properties (i.e. age, metallicity and stellar mass-to-light ratio) vary systematically along roughly the direction of velocity dispersion, which is a proxy for the bulge fraction. Galaxies with higher velocity dispersions have typically older ages, larger stellar mass-to-light ratios and are more metal rich, which indicates that galaxies increase their bulge fractions as their stellar populations age and become enriched chemically. The age and stellar mass-to-light ratio gradients for low-mass galaxies in our sample tend to be positive ( centreSDSS-IV MaNGA: Global stellar population and gradients for about 2000 early-type and spiral galaxies on the mass-size plane
(2018)