Feedback-regulated star formation and escape of LyC photons from mini-haloes during reionization

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 466:4 (2017) 4826-4846

Authors:

T Kimm, H Katz, M Haehnelt, J Rosdahl, J Devriendt, A Slyz

The interstellar medium in high-redshift submillimeter galaxies as probed by infrared spectroscopy

(2017)

Authors:

Julie L Wardlow, Asantha Cooray, Willow Osage, Nathan Bourne, David Clements, Helmut Dannerbauer, Loretta Dunne, Simon Dye, Steve Eales, Duncan Farrah, Cristina Furlanetto, Edo Ibar, Rob Ivison, Steve Maddox, Michał M Michałowski, Dominik Riechers, Dimitra Rigopoulou, Douglas Scott, Matthew WL Smith, Lingyu Wang, Paul van der Werf, Elisabetta Valiante, Ivan Valtchanov, Aprajita Verma

The European Far-Infrared Space Roadmap

(2017)

Authors:

D Rigopoulou, F Helmich, L Hunt, J Goicoechea, P Hartogh, D Fedele, M Matsuura, L Spinoglio, D Elbaz, M Griffin, GL Pilbratt, E Chapillon

A fast machine learning based algorithm for MKID readout power tuning

ISSTT 2017 - 28th International Symposium on Space Terahertz Technology 2017-March (2017)

Authors:

RH Dodkins, K O'Brien, N Thatte, S Mahashabde, N Fruitwala, S Meeker, A Walter, P Szypryt, B Mazin

Abstract:

As high pixel count Microwave Kinetic Inductance Detector (MKID) arrays become widely adopted, there is a growing demand for automated device readout calibration. These calibrations include ascertaining the optimal driving power for best pixel sensitivity, which, because of large variations in MKID behavior, is typically performed by manual inspection. This process takes roughly 1 hour per 1000 MKIDs, making the manual characterization of ten-kilopixel scale arrays unfeasible. We propose the concept of using a machine-learning algorithm, based on a convolution neural network (CNN) architecture, which should reliably tune ten-kilopixel scale MKID arrays on the order of several minutes.

ERIS, first generation becoming second generation, or re-vitalizing an AO instrument

Adaptive Optics for Extremely Large Telescopes, 2017 AO4ELT5 2017-June (2017)

Authors:

A Cortes, R Davies, H Feutchgruber, E Sturm, M Hartl, F Eisenhauer, H Huber, E Wiezorrek, M Plattner, A Buron, J Schubert, S Gillessen, C Rau, N Förster-Schreiber, A Baruffalo, B Salasnich, D Fatinel, S Esposito, A Riccardi, G Agapito, JV Biliotti, R Briguglio, L Carbonaro, A Puglisi, M Xompero, G Cresci, C Giordano, F Mannucci, D Ferruzzi, D Pearson, W Taylor, C Waring, M MacIntosh, D Lunney, D Henry, J Lightfood, X Gao, B Biller, S Quanz, A Glauser, H Schmid, S March, J Kuehn, M Kenworthy, C Keller, F Snik, M Dolci, A Valentino, A Di Cianno, G Di Rico, M Kasper, H Kuntschner, A Glindemann, R Dorn, H Jeroen

Abstract:

Within the VLT instrumentation program, the second generation instrument ERIS (Enhanced Resolution Imager and Spectrograph) combines two key scientifically successful elements of the VLT first generation instrumentation program: It consists of a full renovation of the integral field spectrograph SPIFFI and a new near-IR camera NIX, implementing the most scientifically important imaging modes offered so far by NACO (imaging in the J to M bands, astrometry, Sparse Aperture Masking and Apodizing Phase Plate (APP) coronagraphy). Both diffraction limited sub-systems of ERIS make use of the latest AO technologies with the newly installed AOF (AO Facility) Deformable Secondary Mirror with 1170 actuators and a new laser guide star system. We will describe the changes that will be implemented, give a summary of what SINFONI is currently achieving, and present what to expect from the performance upgrade. With instruments becoming more complex and therefore increasing development times, we describe the challenges to improve image quality, spectral and spatial resolution on the same focus of a VLT UT, which could become valuable lessons for the extension of the life of actual instruments and of future ones. We will address the impact of the aging of the instrument and what critical parts to consider in the design in view of future upgrades, to possibly extend the performances, capabilities and lifetime at lower development costs.