Galaxy Zoo: Quantitative Visual Morphological Classifications for 48,000 galaxies from CANDELS
Monthly Notices of the Royal Astronomical Society Oxford University Press 464:4 (2016) 4420-4447
Abstract:
We present quantified visual morphologies of approximately 48 000 galaxies observed in three Hubble Space Telescope legacy fields by the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and classified by participants in the Galaxy Zoo project. 90 per cent of galaxies have z ≤ 3 and are observed in rest-frame optical wavelengths by CANDELS. Each galaxy received an average of 40 independent classifications, which we combine into detailed morphological information on galaxy features such as clumpiness, bar instabilities, spiral structure, and merger and tidal signatures. We apply a consensus-based classifier weighting method that preserves classifier independence while effectively down-weighting significantly outlying classifications. After analysing the effect of varying image depth on reported classifications, we also provide depth-corrected classifications which both preserve the information in the deepest observations and also enable the use of classifications at comparable depths across the full survey. Comparing the Galaxy Zoo classifications to previous classifications of the same galaxies shows very good agreement; for some applications, the high number of independent classifications provided by Galaxy Zoo provides an advantage in selecting galaxies with a particular morphological profile, while in others the combination of Galaxy Zoo with other classifications is a more promising approach than using any one method alone. We combine the Galaxy Zoo classifications of ‘smooth’ galaxies with parametric morphologies to select a sample of featureless discs at 1 ≤ z ≤ 3, which may represent a dynamically warmer progenitor population to the settled disc galaxies seen at later epochs.Dominant dark matter and a counter rotating disc: MUSE view of the low luminosity S0 galaxy NGC 5102
(2016)
The faint source population at 15.7 GHz - III. A high-frequency study of HERGs and LERGs
Monthly Notices of the Royal Astronomical Society Oxford University Press (2016)
Abstract:
A complete sample of 96 faint ($S > 0.5$ mJy) radio galaxies is selected from the Tenth Cambridge (10C) survey at 15.7~GHz. Optical spectra are used to classify 17 of the sources as high-excitation or low-excitation radio galaxies (HERGs and LERGs respectively), for the remaining sources three other methods are used; these are optical compactness, X-ray observations and mid-infrared colour--colour diagrams. 32 sources are HERGs and 35 are LERGs while the remaining 29 sources could not be classified. We find that the 10C HERGs tend to have higher 15.7-GHz flux densities, flatter spectra, smaller linear sizes and be found at higher redshifts than the LERGs. This suggests that the 10C HERGs are more core dominated than the LERGs. Lower-frequency radio images, linear sizes and spectral indices are used to classify the sources according to their radio morphology; 18 are Fanaroff and Riley type I or II sources, a further 13 show some extended emission, and the remaining 65 sources are compact and are referred to as FR0 sources. The FR0 sources are sub-divided into compact, steep-spectrum (CSS) sources (13 sources) or GHz-peaked spectrum (GPS) sources (10 sources) with the remaining 42 in an unclassified class. FR0 sources are more dominant in the subset of sources with 15.7-GHz flux densities $<$1 mJy, consistent with the previous result that the fainter 10C sources have flatter radio spectra. The properties of the 10C sources are compared to the higher-flux density Australia Telescope 20 GHz (AT20G) survey. The 10C sources are found at similar redshifts to the AT20G sources but have lower luminosities. The nature of the high-frequency selected objects change as flux density decreases; at high flux densities the objects are primarily quasars, while at low flux densities radio galaxies dominate.A low upper mass limit for the central black hole in the late-type galaxy NGC 4414
(2016)
Why do galactic spins flip in the cosmic web? A Theory of Tidal Torques near saddles
Proceedings of the International Astronomical Union Cambridge University Press 11:S308 (2016) 421-432