HELP: star formation as function of galaxy environment with Herschel
Abstract:
The Herschel Extragalactic Legacy Project (HELP) brings together a vast range of data from many astronomical observatories. Its main focus is on the Herschel data, which maps dust obscured star formation over 1300 deg$^2$. With this unprecedented combination of data sets, it is possible to investigate how the star formation vs stellar mass relation (main-sequence) of star-forming galaxies depends on environment. In this pilot study we explore this question between 0.1 < z < 3.2 using data in the COSMOS field. We estimate the local environment from a smoothed galaxy density field using the full photometric redshift probability distribution. We estimate star formation rates by stacking the SPIRE data from the Herschel Multi-tiered Extragalactic Survey (HerMES). Our analysis rules out the hypothesis that the main-sequence for star-forming systems is independent of environment at 1.5 < z < 2, while a simple model in which the mean specific star formation rate declines with increasing environmental density gives a better description. However, we cannot exclude a simple hypothesis in which the main-sequence for star-forming systems is independent of environment at z < 1.5 and z > 2. We also estimate the evolution of the star formation rate density in the COSMOS field and our results are consistent with previous measurements at z < 1.5 and z > 2 but we find a $1.4^{+0.3}_{-0.2}$ times higher peak value of the star formation rate density at $z \sim 1.9$.THE ROLE OF QUENCHING TIME IN THE EVOLUTION OF THE MASS-SIZE RELATION OF PASSIVE GALAXIES FROM THE WISP SURVEY
The secular evolution of discrete quasi-Keplerian systems. I. Kinetic theory of stellar clusters near black holes
The XXL Survey: I. Scientific motivations - XMM-Newton observing plan - Follow-up observations and simulation programme
Abstract:
Context. The quest for the cosmological parameters that describe our universe continues to motivate the scientific community to undertake very large survey initiatives across the electromagnetic spectrum. Over the past two decades, the Chandra and XMM-Newton observatories have supported numerous studies of X-ray-selected clusters of galaxies, active galactic nuclei (AGNs), and the X-ray background. The present paper is the first in a series reporting results of the XXL-XMM survey; it comes at a time when the Planck mission results are being finalised.
Aims. We present the XXL Survey, the largest XMM programme totaling some 6.9 Ms to date and involving an international consortium of roughly 100 members. The XXL Survey covers two extragalactic areas of 25 deg2 each at a point-source sensitivity of ~5 × 10-15 erg s-1 cm-2 in the [0.5−2] keV band (completeness limit). The survey’s main goals are to provide constraints on the dark energy equation of state from the space-time distribution of clusters of galaxies and to serve as a pathfinder for future, wide-area X-ray missions. We review science objectives, including cluster studies, AGN evolution, and large-scale structure, that are being conducted with the support of approximately 30 follow-up programmes.
Methods. We describe the 542 XMM observations along with the associated multi-λ and numerical simulation programmes. We give a detailed account of the X-ray processing steps and describe innovative tools being developed for the cosmological analysis.
Results. The paper provides a thorough evaluation of the X-ray data, including quality controls, photon statistics, exposure and background maps, and sky coverage. Source catalogue construction and multi-λ associations are briefly described. This material will be the basis for the calculation of the cluster and AGN selection functions, critical elements of the cosmological and science analyses.
Conclusions. The XXL multi-λ data set will have a unique lasting legacy value for cosmological and extragalactic studies and will serve as a calibration resource for future dark energy studies with clusters and other X-ray selected sources. With the present article, we release the XMM XXL photon and smoothed images along with the corresponding exposure maps.