Gradient in the IMF slope and Sodium abundance of M87 with MUSE
The Interplay between Local and Global Processes in Galaxies, (2016) 20-20
The Horizon-AGN simulation: evolution of galaxy properties over cosmic time
(2016)
A deep/wide 1-2 GHz snapshot survey of SDSS Stripe 82 using the Karl G. Jansky Very Large Array in a compact hybrid configuration
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 460:4 (2016) 4433-4452
Suppressing star formation in quiescent galaxies with supermassive black hole winds
Nature Nature Publishing Group 533 (2016) 504-508
Abstract:
Quiescent galaxies with little or no ongoing star formation dominate the population of galaxies with masses above 2 × 10(10) times that of the Sun; the number of quiescent galaxies has increased by a factor of about 25 over the past ten billion years (refs 1-4). Once star formation has been shut down, perhaps during the quasar phase of rapid accretion onto a supermassive black hole, an unknown mechanism must remove or heat the gas that is subsequently accreted from either stellar mass loss or mergers and that would otherwise cool to form stars. Energy output from a black hole accreting at a low rate has been proposed, but observational evidence for this in the form of expanding hot gas shells is indirect and limited to radio galaxies at the centres of clusters, which are too rare to explain the vast majority of the quiescent population. Here we report bisymmetric emission features co-aligned with strong ionized-gas velocity gradients from which we infer the presence of centrally driven winds in typical quiescent galaxies that host low-luminosity active nuclei. These galaxies are surprisingly common, accounting for as much as ten per cent of the quiescent population with masses around 2 × 10(10) times that of the Sun. In a prototypical example, we calculate that the energy input from the galaxy's low-level active supermassive black hole is capable of driving the observed wind, which contains sufficient mechanical energy to heat ambient, cooler gas (also detected) and thereby suppress star formation.The Subaru FMOS Galaxy Redshift Survey (FastSound). II. The emission line catalog and properties of emission line galaxies
Publications of the Astronomical Society of Japan Oxford University Press 68:3 (2016) 47